研究概要 |
今年度は、高次Chow群の分解不能(indecomposable)な元の構成を行った。高次Chow群は、代数的サイクルからなるある複体のホモロジー群として定義され、代数的K群のある部分空間に同型であることが知られている。また、Voevodskyのmotivic cohomologyと同型である。高次Chow群には、decomposable partと言う比較的わかり易い部分群があり、そこに入らない元は分解不能(indecomposable)とよばれる。分解不能な元の構成は、ここ数年活発に研究されている話題である。論文6はこの問題の数論的な側面を考えたもので、有理数体上のある代数曲線の積Xの高次Chow群CH^2(X,1)に分解不能元を構成した。これは、L関数の特殊値に関するBeilinson-Bloch予想と、代数的サイクルに関するTate予想から存在が予言されるものの特別な場合である。 得られた結果の1つは、超越次数の高い体上定義された代数曲面の高次Chow群CH^3(X,2)に、新しい分解不能元を構成する方法を与えたことである。この結果は更に高次の場合に拡張できるものと思われる。 得られたもう一つの結果は、CH^3(X,2)のdecomposable partの新しい定義を与え、そこに入らないサイクルを構成した事である。
|