研究課題/領域番号 |
14F04321
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 外国 |
研究分野 |
解析学基礎
|
研究機関 | 早稲田大学 |
研究代表者 |
松崎 克彦 早稲田大学, 教育・総合科学学術院, 教授 (80222298)
|
研究分担者 |
JAERISCH Johannes 早稲田大学, 教育・総合科学学術院, 外国人特別研究員
|
研究期間 (年度) |
2014-04-25 – 2015-03-31
|
研究課題ステータス |
完了 (2014年度)
|
配分額 *注記 |
1,100千円 (直接経費: 1,100千円)
2014年度: 1,100千円 (直接経費: 1,100千円)
|
キーワード | 力学系 |
研究実績の概要 |
はじめに,フックス群および自由群の非自明正規部分群で,収束指数がもとの群の 1/2 となるものの例の構成を試みた.収束指数を商空間のラプラシアンのスペクトルの底で読み替えて,それを幾何学的に評価する方針をとったが,等周定数を用いる方法では原理的に不可能であることがわかった.ラプラシアンの固有関数を構成して,スペクトルの底を直接に評価することも成功しなかった.収束指数が最大指数の 1/2 以下となる群の構成法がほとんど知られていないこと,およびある軌道に関する反転で生成される群の収束指数をもとの軌道に関する収束指数で評価する問題が重要であることが判明した.
その後,収束指数がもとの群の 1/2 に近づく非自明正規部分群の列の構成を自由群の場合に考察した.方法はやはりスペクトルの底を等周定数を用いて評価するのであるが, Mohar によるグラフ理論の結果で,スペクトルの底は等周定数を用いて評価できることがわかった.さらに,等周定数は平面グラフの場合には単射半径で評価できることを示した.結論としては,自由群の生成元の十分大きなべきで生成される正規部分群の列をとれば,収束指数がもとの群の 1/2 に近づくことが証明できた.
(相対)双曲群の非自明正規部分群による剰余類群の増大度(収束指数)に関するW. Yang の結果に,これがもとの双曲群の収束指数に近づくような群の列を構成するものがある.剰余類群の増大度と,上で述べた商空間のラプラシアンのスペクトルの底および等周定数の間の関係は,Mohar による同じ論文で研究されている.これにより,自由群の場合には剰余類群の増大度の問題は,非自明正規部分群の収束指数(双対増大度)に関する研究結果からも従うことがわかった.さらに,自由群の収束指数,非自明正規部分群の双対増大度および剰余類群の増大度の間に成立する関係式を導くことができた.
|
現在までの達成度 (段落) |
26年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
26年度が最終年度であるため、記入しない。
|