研究課題/領域番号 |
15340027
|
研究種目 |
基盤研究(B)
|
配分区分 | 補助金 |
応募区分 | 一般 |
研究分野 |
数学一般(含確率論・統計数学)
|
研究機関 | 東京大学 |
研究代表者 |
山本 昌宏 東京大学, 大学院・数理科学研究科, 助教授 (50182647)
|
研究分担者 |
中村 玄 北海道大学, 大学院・理学研究科, 教授 (50118535)
斎藤 三郎 (斉藤 三郎) 群馬大学, 工学部, 教授 (10110397)
磯 祐介 (磯 裕介) 京都大学, 大学院・情報学研究科, 教授 (70203065)
井川 満 京都大学, 大学院・理学研究科, 教授 (80028191)
西田 孝明 早稲田大学, 理学院, 教授 (70026110)
大西 和榮 茨城大学, 理学部, 教授 (20078554)
登坂 宣好 日本大学, 生産工学部, 教授 (00059776)
|
研究期間 (年度) |
2003 – 2006
|
研究課題ステータス |
完了 (2006年度)
|
配分額 *注記 |
13,900千円 (直接経費: 13,900千円)
2006年度: 2,400千円 (直接経費: 2,400千円)
2005年度: 2,300千円 (直接経費: 2,300千円)
2004年度: 4,200千円 (直接経費: 4,200千円)
2003年度: 5,000千円 (直接経費: 5,000千円)
|
キーワード | 逆問題 / 数学解析 / 数値解析 / 不安定性 / 正則化 / 応用逆問題 / 数値解法 / 正則化法 / 安定性 |
研究概要 |
直接視ることができない対象の内部の物理的な性質を境界における観測などの利用できるデータから決定したり、結果から原因を推定するという逆問題の研究が数理科学や工業現場において多様な形で現れてきており、その数学解析とそれに基づいた数値解析手法の開発が最近益々重要になってきている。その理由としては、逆問題の応用上の重要性とあいまって、計算機や観測機器が近年飛躍的に向上してきたことがある。そのために従来型の数値解法の改良が強く期待されている。しかし、数値解法の開発や品質保証のためには逆問題自体の数学も遂行されなくてはならないが、あまり成果が挙がっていないのが現状である。例えばプラントなどの内部の状態を適切に評価・制御して効率的かつ経済的な施設の運営に結びつけるような産業界における逆問題には本質的な不安定性があり、合理的かつ有効な数値解法のためには、従来型の手法をあてはめることは危険である。言い換えれば、良好な数値解を得るためには、もとの逆問題に安定性の度合いにみあった精度を保証する数値解法を選ぶ必要がある。そこで対象となっている個々の逆問題に対して一意性や安定性などの数学解析の研究がまず必要である。本研究ではそのような逆問題の数学解析の成果とそれに立脚した有効な数値解法が開発された。数学解析の手法としても偏微分方程式論や関数論など知識を駆使した多彩な成果が得られた。さらに本研究成果に関して産業界との連携が深まり、特許の出願が成された。
|