研究課題/領域番号 |
15540125
|
研究種目 |
基盤研究(C)
|
配分区分 | 補助金 |
応募区分 | 一般 |
研究分野 |
数学一般(含確率論・統計数学)
|
研究機関 | 愛媛大学 |
研究代表者 |
野倉 嗣紀 愛媛大学, 理学部, 教授 (00036419)
|
研究分担者 |
SHAKHMOTOV Dmitri 愛媛大学, 理学部, 教授 (90253294)
平出 耕一 愛媛大学, 理学部, 助教授 (50181136)
藤田 博司 愛媛大学, 理学部, 講師 (60238582)
|
研究期間 (年度) |
2003 – 2005
|
研究課題ステータス |
完了 (2005年度)
|
配分額 *注記 |
3,300千円 (直接経費: 3,300千円)
2005年度: 1,000千円 (直接経費: 1,000千円)
2004年度: 1,000千円 (直接経費: 1,000千円)
2003年度: 1,300千円 (直接経費: 1,300千円)
|
キーワード | セレクター / 超空間 / Fell位相 / 次元 / Vietoris位相 / 可算コンパクト / 連続選択関数 / Ginsburg's question / 積空間 / 可算コンパクト性 / 擬コンパクト性 / Ginsburg's problem |
研究概要 |
本研究の主な目的は(1)フィルター空間でのセレクターの存在、非存在を調べる、(2)超空間の部分空間の位相構造、特にFrechet性、α性を調べること及び(3)セレクターを許容する空間と次元関数との関連を明確にすることであった。目的(1)に関しては次の(a),(b)の結果目的(2)に関しては(c),(d)の結果が得られ更に(e)でセレクターを許容すればその次元は1次元以下かという問題に対する反例を与えた。 (a)Xの点pを極大にするセレクターが存在すれば点pのcharacterがκであることとXがκ=pをとる順序数空間[0,κ]をコピーとして持つことは同値である。 このことから例えば、コンパクト位相群XではXがセレクターを許容することとXが零次元距離空間=Cantor set)であることは同値であることが導かれる。 (b)Fell位相によるセレクターが存在することとtopologically well-orderahilityは同値である。 (c)homogeneous space Xに対してExp(X)が可算(擬)コンパクトならばXの可算積も可算(擬)コンパクトになることを示しGinsburgの問題の部分解を得た[3]。 (d)基空間Xがある種のSelection Principleを満たすことと(Vietoris位相とは異なる)超空間Exp(X)のα_2性、α_3性は同値であることを示した。 (e)scatteredな空間弱セレクターを許容するが次元がn次元であるものが存在する、ここでnは無限を含め任意の自然数の値をとりうる。
|