配分額 *注記 |
3,700千円 (直接経費: 3,700千円)
2005年度: 1,200千円 (直接経費: 1,200千円)
2004年度: 1,200千円 (直接経費: 1,200千円)
2003年度: 1,300千円 (直接経費: 1,300千円)
|
研究概要 |
まず今年度の研究実績を大まかに述べる:臍点を持たない曲面でその上の主分布の一つの積分曲線が全て測地線であるようなものを調べ,特にこのような曲面の曲率線を内在的におよび外在的に特徴づけた. まず曲率線の内在的な特徴づけについて説明する.臍点を持たない曲面は第一基本形式と二つの主分布(各点で主方向を与える1次元分布)からなる準曲面構造を持つ.以下のように曲面の準曲面構造を第一基本形式の局所的な表現の仕方によって特徴づけた.(u,υ)のを主分布と相性が良い局所座標とする.主分布の一つの積分曲線が全て測地線であるので,第一基本形式は局所的に、A^2du^2+dυ^2と表される(逆に第一基本形式がこのように表される曲面の主分布の一つの積分曲線は全て測地線である).Gauss曲率Kが恒等的に零であるならば,Aは局所的にA=α(u)υ+1と表わされる.Kは零にはならないと仮定する.このときAはA(u,υ)=1+A_1(u)A_2(u,υ)と表される,但しA_2は(A_2)_υ=sin(α_1(u)+α_2(υ))を満たしまたA_1,α_1,α_2は1変数関数でA_1>0およびα_1(u)+α_2(υ)∈(-π/2,π/2)を満たす.α_1が定数であることと曲面の各点の近傍が標準的な主方向平行曲面であることは同値である. また曲面の曲率線の空間曲線としての曲率および捩率を特徴づけた.Gauss曲率は零にならないと仮定する.測地線である曲率線の各々はある平面に含まれ,曲面の各点の近傍をうまく選ぶと測地線である曲率線は互いに合同になる.またもう一つの曲率線の族が平面曲線からなることと曲面の各点の近傍が標準的な主方向平行曲面であることは同値である.一般にこれら曲率線の曲率kおよび捩率_Tは上述のA, A_1,α_1を用いてそれぞれk=A_1/A, T=α'_1/Aと表される.以上のことに注意すると,今考察している曲面は二つある曲率線の族のそれぞれから互いに交わる曲線を一つずつとるとこれらによって局所的に決定されることがわかる.標準的な主方向平行曲面に対してはこのような曲線の対を生成対(generating pair)と呼んだ.Gauss曲率が恒等的に零であるときも,類似の結果が得られる.
|