研究課題/領域番号 |
15740057
|
研究種目 |
若手研究(B)
|
配分区分 | 補助金 |
研究分野 |
数学一般(含確率論・統計数学)
|
研究機関 | 東北大学 (2004-2005) 名古屋大学 (2003) |
研究代表者 |
梁 淞 東北大学, 大学院・情報科学研究科, 助教授 (60324399)
|
研究期間 (年度) |
2003 – 2006
|
研究課題ステータス |
完了 (2005年度)
|
配分額 *注記 |
3,400千円 (直接経費: 3,400千円)
2005年度: 1,100千円 (直接経費: 1,100千円)
2004年度: 1,100千円 (直接経費: 1,100千円)
2003年度: 1,200千円 (直接経費: 1,200千円)
|
キーワード | 大偏差原理 / 精密評価 / ラプラス近似 / 拡散過程 / グリーン作用素 / 量子場 / Hoegh-Krohnモデル / ラテス近似 / 補間理論 / エルゴード性 |
研究概要 |
今年度はまず、バナッハ空間上で値を取る独立同分布な確率変数の和に関するラプラス近似の漸近展開の研究を行った。同じ設定の下でのラプラス近似はすでに研究したが、自然な問題提起として、漸近展開の問題も出てくる。本研究はこの問題を解決した。具体的には、ラプラス・メソッドを用いて、指数上の二次式を一次式に変形し、独立性が使用できるようにすることにより、テイラー展開で具体的な評価を与えた。 次に、ユークリッド空間上の拡散過程における大偏差原理の精密評価に関する研究に取り組み、非退化な場合のラプラス近似を与えた。ユークリッド空間上の拡散過程に関しては、ステート空間がコンパクトではないので、トーラス上の場合とは違い、色々な評価が難しくなる。本研究はまず、前年度に示した半群の微分作用素に対する評価を用いて、グリーン作用素の微分に対する評価を与えた。一方、拡散過程のドリフト項が線形より強ければ、系が遠くに行く確率が十分小さいであるという性質をもつ。本研究は、これらを用い、ユークリッド空間上の拡散過程における大偏差原理の精密評価を与えた。 また、量子場のラテス近似に関する研究も行った。具体的には、2次元ユークリッド空間上のHoegh-Krohn量子場モデルにおいて、ラテス近似を考えるとき、フリー項及び相互作用項が同じラテス近似により近似される場合の確率測度族の収束性がすでに知られているが、異なるラテス近似の場合の状況がまだ知られていない。本研究は、この異なるラテス近似の場合を調べるために有力な道具となるWick積の中心極限定理を調べた。
|