• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

双曲型測度の極限的直積構造に関する研究

研究課題

研究課題/領域番号 15740107
研究種目

若手研究(B)

配分区分補助金
研究分野 大域解析学
研究機関東京工業大学 (2004-2005)
東京都立大学 (2003)

研究代表者

鷲見 直哉  東京工業大学, 大学院・理工学研究科, 助教授 (50301411)

研究期間 (年度) 2003 – 2005
研究課題ステータス 完了 (2005年度)
配分額 *注記
2,300千円 (直接経費: 2,300千円)
2005年度: 800千円 (直接経費: 800千円)
2004年度: 800千円 (直接経費: 800千円)
2003年度: 700千円 (直接経費: 700千円)
キーワード極限的直積構造 / 双曲型測度 / エノン写像族 / リャプノフ指数 / SRB測度 / ハウスドルフ次元 / 双曲型速度 / Bernoulli性
研究概要

近年になってBarreira,Pesin,Schmelingらは,双曲型測度が「極限的直積構造」とばれる性質をもつことを発見しました.彼等はこの性質を用いてEckmann-Ruelle予想を解決しました.極限的直積構造は,位相的に定義された局所直積構造の測度論的な類似物になっています.しかし,局所直積構造ほどその研究は進められていません.本研究では,双曲型測度の極限的直積構造を用いたエルゴード理論的な研究を進めることを目的とします.
本年度はHenon写像族を用いて特殊な双曲型測度の例を構成しました.ここで,Henon写像族とは1976年にHenonによって考案されたR^2上の写像で,次式で与えられます:f(x,y)=f_<a,b>(x,y)=(y+1-ax^2,bx).90年代の初頭にBenedicks-Carlesonは,(a,b)=(2,0)に近いLebesgue測度正の集合Eが存在し,(a,b)∈Eに対してf_<a,b>の臨界的集合と呼ばれるCantor集合Cと定数c>0とλ>1があって次を満たすことを示しました:x∈Cに対し接ベクトルv=(0,1)をとると,Collet-Eckmann条件|D_xf^n(v)|>cλ^nを満たす.この結果をもとにして,Benedicks-Youngは(a,b)∈Eに対してf_<a,b>がSRB測度をもつことを示しました.
これらの結果に対して、私はいくらでも小さなLyapunov指数をもつSRB測度をもつようなHenonアトラクターの例を構成しました.正確にはEを上で述べたBenedicks-Carlesonのパラメター集合とし,E^*をEの密度点の全体とします.任意の(a,b)∈E^*のいくらでも近くに(c,b)∈(a,b)が存在して臨界点集合CのLyapunov指数の最小値が0であることを示しました.
本研究で得られた例を基にして.双曲型測度がBernoulli性を持つための判定条件の研究、相関関数が多項式的な減衰をする(混合性の度合いが弱い)ストレンジアトラクターの構成ができると期待されます.

報告書

(3件)
  • 2005 実績報告書
  • 2004 実績報告書
  • 2003 実績報告書
  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] Naoya Sumi: "Diffeomorphisms with positive entropy and chaos in the sense of Li-Yorke"Ergodic Theory and Dynamical Systems. 23. 621-635 (2003)

    • 関連する報告書
      2003 実績報告書

URL: 

公開日: 2003-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi