研究概要 |
追加学習可能なパターン認識システムの開発に必要不可欠な学習アルゴリズムを考案した.成果の概要を以下にまとめる. (1)特徴空間の追加学習として,従来のIncremental Principal Component Analysis (IPCA)の改良を行った.具体的には,特徴空間の次元増加の判定基準として,寄与率による方法を提案し,その更新式を求めた. (2)従来のIPCAは,1つデータが与えられるたびに固有値問題を解く必要があった.これに対し,複数のデータをまとめて1回の更新で新しい固有基底を求める学習アルゴリズム(Chunk IPCA)を提案した. (3)改良IPCAアルゴリズムおよびCIPCAアルゴリズムを顔画像認識に適用し,追加学習が進むにつれて,認識精度が高まることとFalse Positive Rateが小さくなることを確認した.また,CIPCAを導入することによって,学習時間が大幅に短縮されることを確認した. (4)特徴空間の更新に伴い,識別機(ニューラルネット)の更新も同時に行う必要があり,結合荷重の更新だけでなく,入力変数の個数の変動にも追従できなければいけない.この問題に対し,長期記憶を導入したニューラルネットの記憶アイテムを特徴空間に合わせて更新し,それらを訓練データと一緒に学習するアルゴリズムを開発した. (5)従来の独立成分分析(Independent Component Analysis ; ICA)を教師あり学習に拡張する方式を提案し,独立性とクラス分離性を同時に高める学習アルゴリズムを導出した.また,いくつかのベンチマークデータで性能評価を行い,従来のICAやPCAで求めた特徴量に比べて,性能がよいデータもあることを確認した.
|