• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Non-inferiority仮説検定問題における尤度比統計量の漸近的性質

研究課題

研究課題/領域番号 16500178
研究種目

基盤研究(C)

配分区分補助金
応募区分一般
研究分野 統計科学
研究機関大阪府立大学

研究代表者

高木 祥司  大阪府立大学, 理学系研究科, 助教授 (00231390)

研究期間 (年度) 2004 – 2006
研究課題ステータス 完了 (2006年度)
配分額 *注記
2,900千円 (直接経費: 2,900千円)
2006年度: 700千円 (直接経費: 700千円)
2005年度: 900千円 (直接経費: 900千円)
2004年度: 1,300千円 (直接経費: 1,300千円)
キーワードnon-inferiority仮説 / 指数分布 / タイプI打ち切り型データ / 尤度比統計量 / k-標本問題 / 正規分布 / 微分不可能な点 / ワイブル分布 / パラメータ直交化変換 / non-inferiority / 条件付尤度
研究概要

主に以下の2つのタイプの問題について研究成果を得た。
1.母集団が指数分布に従い、さらに、打ち切り型データの場合に、non-inferiority仮説における尤度比統計量の漸近分布について研究を行った。特に、打ち切り条件が確率変数に依存した場合、その変数がどのような確率的条件を満たしていれば、尤度比統計量の漸近分布が得られるかも考察した。結果として、尤度比統計量は、自由度1のカイ2乗分布x用いた形で、1/2+1/2xと表現されるという結果を導いた。さらに、non-inferiority仮説を含む一般的な片側仮説を考え、加えて、k-標本の場合を取り扱うことで、その結果を拡張した。このとき、帰無仮説はいくつかのnon-inferiority仮説の和集合で表現される。この帰無仮説の境界上の点での漸近分布が導かれた。その境界点がひとつの仮説によって構成されているときは、2標本問題と同じ漸近分布をもち、境界点が複数の仮説に共通の場合は、その個数や仮説の関数形、さらには、標本数比や打ち切り条件に依存した複雑な形の漸近分布となることがわかった。
2.Non-inferiority仮説は、それをより一般的な形で表現することによって、様々なタイプの仮説検定問題へと応用できる。ここでは、正規分布を仮定し、Non-inferiority仮説が関数関係で表現できる場合を考え、その関数が微分不可能な点をもつ場合の尤度比統計量の漸近的性質を考察した。その漸近的分布は、微分不可能な点での局所的な帰無仮説領域が、凸であるか、そうでないかによって、まったく異なる性質をもつことがわかった。この事実は、仮説が、積集合や和集合で表現される場合に応用が可能であると思われる。

報告書

(4件)
  • 2006 実績報告書   研究成果報告書概要
  • 2005 実績報告書
  • 2004 実績報告書

URL: 

公開日: 2004-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi