(1)オートマティック群に関するGerstenの問題の研究 (研究協力者:田村誠氏、中川義行氏) 閉3次元多様体の基本群に対する弱双曲化予想(Perelmanの仕事を認めれば定理)とは基本群は(1)有限群(2)Z+Z(階数2の自由アーベル群)を部分群として含む(3)語双曲群のいずれかになる、というものである。(技術的には有限群は語双曲群だが、ここでは分けて考えた。)この「閉3次元多様体の基本群」を「オートマティック群」に置き換えて同じ現象が起こるかどうかを問うのがGerstenの問題である。この研究では、この問題について考察を行った。群がZ+Zを部分群として含む場合は、Z+Zの格子が群の中にあることになる。本研究では、「n-track」というZ+Zの格子に似ている構造を導入し、オートマティック群が語双曲的でない場合はほとんどいつも、n-trackが群の中に見つかることを示した。さらにオートマティック構造が比較的単純な場合として「prime-starred」というオートマティック構造のクラスを導入し、この場合は、上記Gerstenの問題が(技術的な条件付で)肯定的に解けることを示した。 (2)4色問題と球面の分岐被覆に関する研究 (研究協力者:Yo'av Rieck氏) 平面グラフに関する4色問題は1970年代に計算機を用いた方法で証明されているが、実際に与えられた平面グラフを4彩色するための効果的なアルゴリズムはよく知られていない。本研究では、球面の分岐被覆から定まるデータと遺伝的アルゴリズムを組み合わせた方法を考察し、その効果について検討を行った。
|