研究課題/領域番号 |
16740052
|
研究種目 |
若手研究(B)
|
配分区分 | 補助金 |
研究分野 |
数学一般(含確率論・統計数学)
|
研究機関 | 京都大学 |
研究代表者 |
熊谷 隆 京都大学, 数理解析研究所, 助教授 (90234509)
|
研究期間 (年度) |
2004 – 2005
|
研究課題ステータス |
完了 (2005年度)
|
配分額 *注記 |
3,600千円 (直接経費: 3,600千円)
2005年度: 1,600千円 (直接経費: 1,600千円)
2004年度: 2,000千円 (直接経費: 2,000千円)
|
キーワード | ハルナック不等式 / 測度付き距離空間 / 劣拡散的 / rough isometry / 熱核 / ランダムウオーク / 分枝過程 / 飛躍型確率過程 / ランダムウォーク |
研究概要 |
本年度行った研究により得られた成果は以下の通りである。 1.D次元正方格子上の対称マルコフ連鎖で、2点間のコンダクタンスが、2点間の距離が離れても0にならないようなものを考える。コンダクタンスに関する一様な二乗可積分性条件の下、熱核の評価、exit timeの評価を行った。さらに、コンダクタンスに関する仮定を加えることにより、一様なハルナック不等式が成り立つことを証明し、また、スケール変換したマルコフ過程にある種の条件を課することにより、このマルコフ過程がユークリッド空間上のdivergence formで決まる拡散過程に収束することを証明した。この結果は、Bass氏との共著論文にまとめ、現在雑誌に投稿中である。 2.D次元正方格子上の飛躍型確率過程が放物型ハルナック不等式を満たすための必要十分条件、ある種の多項式的な減衰をする熱核評価を持つための必要十分条件について、Barlow氏、Bass氏と共同で研究を行った。これらの必要十分条件について部分的な結果を得ることができ、今後も継続して共同研究を行うこととなった。 3.フラクタルを典型例とする自己相似な空間上に、自己相似な局所正則ディリクレ形式が与えられ、その定義域となる関数空間がベソフ空間であるとする。このとき、このディリクレ形式の自己相似部分集合へのトレースをとったとき、対応する定義域を決定するという問題を取り扱った。これは、関数空間論的にはベソフ空間のトレース理論の一般化に相当する問題である。もとのディリクレ形式がハルナック不等式などいくつかの条件を満たすとき、トレースで決まる関数空間が再びベソフ空間となることを示し、その特徴づけを行った。この結果は、日野正訓氏との共著論文にまとめ、現在雑誌に投稿中である。
|