研究概要 |
本研究では,高誘電率酸化膜(High-k膜)とSiの界面としてHfO_2/SiとY_2O_3/Siの2つの系を比較しながら,界面反応機構と反応経路の検討を進めてきた。前者は界面でSiの酸化が見られ,後者はシリケート化反応が見られる例である。平成16年度はHfO_2/Si界面反応のモデル化を進めたが,今年度はまず,このモデルを発展させてY_2O_3/Si界面反応の定量的な説明を試みた。予め界面にSiO_2層を挟んだY_2O_3/SiO_2/SiスタックをN_2中で加熱したところ,600℃付近からシリケート化反応によってSiO_2層が減少し始め,900℃以上となると減少が顕著となる。ところがそれ以上温度を上げてもSiO_2層は消失せずに逆に上昇に転じてしまう。これは残留酸素による酸化とシリケート化反応の競合である。HfO_2/Siでの界面反応モデルと同様に,界面層中を原子状の酸素が失活しながら通過して界面に到達するモデルを適用したところ,界面層が減少して薄くなると急速に原子状酸素の失活率が低下して酸化速度が増大することによって定量的に説明できた。 次に,基板をGeに変えた場合の界面反応の解析へと展開した。近年,高チャネル移動度を有するGe上にトランジスタを作製する試みが急速に注目されているためである。その結果,HfO_2/Ge,Y_2O_3/Ge,どちらの場合もN_2アニールによって界面層が消失し,Ge上であれば界面層を持たない界面を容易に形成できた。これは主に界面酸化により形成されるGeO_2が不安定で,多量にHigh-k膜中へ拡散,さらに気相へと脱離するためと考えられる。SIMS測定の結果,絶縁膜中に拡散したGeが検出されたが,特にY_2O_3/Geの場合に顕著であり,YとGeを含む複合酸化物が界面に形成され得ることを示唆する。即ち,Geの界面反応の制御においても,ますますHigh-k材料の選択が重要となる。
|