研究課題/領域番号 |
16J07685
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
研究分野 |
分析化学
|
研究機関 | 東京大学 |
研究代表者 |
秋吉 一孝 東京大学, 工学系研究科, 特別研究員(DC1)
|
研究期間 (年度) |
2016-04-22 – 2019-03-31
|
研究課題ステータス |
完了 (2018年度)
|
配分額 *注記 |
2,800千円 (直接経費: 2,800千円)
2018年度: 900千円 (直接経費: 900千円)
2017年度: 900千円 (直接経費: 900千円)
2016年度: 1,000千円 (直接経費: 1,000千円)
|
キーワード | プラズモン誘起電荷分離 / 局在表面プラズモン共鳴 / 電子移動 / 金ナノプリズム / 周期構造 / 電子線リソグラフィ / lattice plasmon / Rayleigh Anomaly / 酸化チタン / 金ナノ粒子 / 回折カップリング / ナノアンテナ効果 / 銀ナノキューブ |
研究実績の概要 |
今年度は下記の2点に大別した、局在表面プラズモン共鳴(LSPR)センサの高性能化を達成し、成果を学会発表や学術論文により報告することができた。 ①金ナノ粒子を酸化チタンで被覆した系に対し、適切な電位を印加することにより、LSPRに基づく電荷分離(PICS)が起こる波長や効率を電気化学的に制御した。この構造ではLSPR が長波長側にシフトしやすく、PICS 効率が低くなりやすいが、印加電位を負側にシフトさせると、カソード光電流が増大した。また、光電流ピークは元の吸収ピークの位置に近づくように長波長シフトした。これは、酸化チタン内のバンド曲がりが大きくなり、金ナノ粒子から酸化チタンに注入された電子の、金ナノ粒子への逆電子移動が抑制された効果と、ショットキー障壁が低くなり、酸化チタンへの電子移動が促進された効果などによるものと推察された。これを粒子近傍の屈折率変化に基づくバイオセンシングに利用すれば、出力信号をより大きくし、検出しやすくできると期待される。 ②金ナノプリズムを光の波長程度の間隔で周期的に配列させ、粒子近傍と溶液バルクの屈折率変化を同時かつ定量的に評価できる新規プラズモン-回折ハイブリッドセンサを開発した。粒子近傍と溶液バルクの屈折率の両方に選択性の高い、LSPR由来のピークだけでなく、溶液バルクの屈折率に選択性の高い、回折由来のディップについてもセンサ応答として利用することで、粒子近傍と溶液バルクの屈折率変化を同時に得られることを、実験と電磁場シミュレーションから裏付けた。これは、試料溶液と標準溶液との屈折率差による影響を排除して、センサ近傍のみの屈折率変化を評価することに役立ち、他の新規マルチ応答センサの開発にもつながると期待される。 以上のように、当初の予定とは違う方向へも進展したが、その結果、種々の新規な知見が得られ、プラズモンセンサ特性の改善などに応用できた。
|
現在までの達成度 (段落) |
平成30年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
平成30年度が最終年度であるため、記入しない。
|