研究課題
特別研究員奨励費
本研究の目的は非線形分散型方程式の初期値問題の適切性を示すことである。特に初期値の正則性が低い場合の適切性を示すことを目標とする。昨年度から取り組んでいる研究を発展させ、非線形項に微分が含まれた三本の非線形シュレディンガー方程式で構成される非線形シュレディンガー方程式システム (以下 SNLS) の初期値問題についての結果とザハロフクズネツォフシステム (以下 ZK) の初期値問題についての結果が得られたことを述べる。(SNLS) の初期値問題についての結果を述べる。この結果は宮崎大学の平山浩行先生との共同研究により得られたものである。(SNLS) の初期値問題に関して、既に平山先生によって適切性に関する結果が得られており、今回の結果はその先行研究で出来ていなかった部分を解決したものである。具体的には、二次元と三次元の結果が得られ、二次元は適切性が成り立つ条件と、(ある意味で)非適切性が言える条件のギャップを完全に埋める最適な結果を得ることが出来た。また三次元の場合はスケール臨界の場合を除いた最良の結果を得ることが出来た。この結果はフーリエ制限ノルム法に加え、評価が難しい共鳴項について、超曲面上の合成積評価を用いて精密な評価を行ったことにより達成された。続いて (ZK) の初期値問題についての結果を述べる。今回は二次元 (ZK) の初期値問題の適切性に関する結果を得ることが出来た。(ZK) の適切性を示すときに最も困難な点は、シュレディンガー方程式などとは異なり線形項の空間微分のシンボルが非球対称であることから、非線形相互作用の評価が難しくなることである。この点を解決するために本研究では、前述のフーリエ制限ノルム法と超曲面上の合成積評価に加え、最も難しい相互作用を見つけ出すために周波数空間に対し Whitney 型の分割を施した。
29年度が最終年度であるため、記入しない。
すべて 2018 2017 2016
すべて 雑誌論文 (3件) (うち査読あり 3件) 学会発表 (9件) (うち国際学会 1件、 招待講演 6件)
Discrete & Continuous Dynamical Systems - A
巻: 38 号: 3 ページ: 1479-1504
10.3934/dcds.2018061
Advances in Differential Equations
巻: 印刷中
RIMS Kokyuroku Bessatsu