• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

マルコフ確率場にもとづくクラウドデータセンタの異常検知

研究課題

研究課題/領域番号 16K16047
研究種目

若手研究(B)

配分区分基金
研究分野 情報ネットワーク
研究機関大阪大学

研究代表者

鮫島 正樹  大阪大学, 情報科学研究科, 助教 (80564690)

研究期間 (年度) 2016-04-01 – 2018-03-31
研究課題ステータス 中途終了 (2017年度)
配分額 *注記
3,900千円 (直接経費: 3,000千円、間接経費: 900千円)
2018年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2017年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2016年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
キーワード異常検知 / ネットワーク / クラウドコンピューティング / データセンタ / ディペンダブル・コンピューティング
研究実績の概要

本研究では,クラウドデータセンタにおいて観測可能なCPU使用率やメモリなどをマルコフ確率場としてモデル化し,異常を検知することを目的とした.初年度より,公開されているCPUのデータに対して,人工的な異常値を加えてデータセットを作成し,マルコフ性を仮定したモデル化を試みた.具体的には,時間の連続性やサーバ間の関係性を条件付き確率分布で表現し,観測済みのデータから確率分布のパラメータを推定した.確率分布の推定には確率的主成分分析を利用し,Graphical LASSOによって関係性を推定した.本手法は,単純な主成分分析による異常検知手法と比べて,良い性能を示していることを確認した.一方,確率分布の推定と関係性の推定が個別に行われていることから,これらを同時に行うことで性能を改善できる可能性がある.そこで近年活発に研究されているBayesian Graphical LASSOを用い,加えて,時系列データによくみられるトレンドや周期性を陽にモデルに組み込むことを検討した.しかし,多次元データにおいては,モデルのパラメータ推定が十分に収束しないことが確認され,大規模なデータセットにおいては十分な性能を確認できなかった.比較的小規模なデータセットに対しては有効性が確認できたことから,対象データを教師なし学習等によって複数のグループに分割して適用すれば良い結果を期待できる.今後は,パラメータ推定の収束性能の向上や,本手法の適用範囲に関する調査が課題として挙げられる.

報告書

(2件)
  • 2017 実績報告書
  • 2016 実施状況報告書
  • 研究成果

    (2件)

すべて 2017 2016

すべて 学会発表 (2件)

  • [学会発表] スパース構造学習によるサーバの異常検知2017

    • 著者名/発表者名
      小泉成司, 鮫島正樹, 菅野裕介, 松下康之
    • 学会等名
      情報処理学会研究報告インターネットと運用技術
    • 関連する報告書
      2017 実績報告書
  • [学会発表] マルコフ転換モデルによるクラウドサービスのリソース使用量分析2016

    • 著者名/発表者名
      鮫島正樹
    • 学会等名
      電気学会 情報システム研究会, IS-16-013, pp.7-11
    • 発表場所
      はこだて未来大学,北海道函館市
    • 年月日
      2016-08-02
    • 関連する報告書
      2016 実施状況報告書

URL: 

公開日: 2016-04-21   更新日: 2018-12-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi