研究課題/領域番号 |
16K16138
|
研究種目 |
若手研究(B)
|
配分区分 | 基金 |
研究分野 |
感性情報学
|
研究機関 | 東京大学 (2018) 東京理科大学 (2016-2017) |
研究代表者 |
藤原 寛太郎 東京大学, ニューロインテリジェンス国際研究機構, 特任准教授 (00557704)
|
研究期間 (年度) |
2016-04-01 – 2019-03-31
|
研究課題ステータス |
完了 (2018年度)
|
配分額 *注記 |
3,900千円 (直接経費: 3,000千円、間接経費: 900千円)
2018年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2017年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2016年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
|
キーワード | 非定常確率過程 / 統計量 / 数理工学 / 神経科学 / 生物物理 / 生物・生体工学 / 統計数学 |
研究成果の概要 |
神経スパイク時系列に対する様々な統計解析手法の提案・検討を行った。その結果、これまでの統計解析手法では適用が難しいとされてきたような長時間相関を有する時系列データや、極めて定常な時系列データに対して我々の開発した統計解析手法が有効であることを示された。さらに、神経スパイク時系列の複雑性としてデータの周期性やカオス性などの様々な尺度から時系列を評価し、それらの尺度と神経数理モデルとの関係性を調査した。
|
研究成果の学術的意義や社会的意義 |
本研究成果により、神経活動からこれまでとは異なる新たな情報を抽出することが可能となった。これは、脳神経活動からいかに情報を抽出できるかという脳神経科学における根源的な問いに対する一つの答えとして、意義があるといえる。 また現状の機械学習的なAIとは異なる脳に倣った情報処理システムを構築するには、脳神経細胞の情報表現様式を理解することが必要不可欠である。その点で、本研究成果のような神経活動を数理的に抽出する試みは、その情報表現様式を理解する上で一定の意義があるといえる。
|