研究課題/領域番号 |
17740017
|
研究種目 |
若手研究(B)
|
配分区分 | 補助金 |
研究分野 |
代数学
|
研究機関 | 神戸大学 |
研究代表者 |
庵原 謙治 神戸大学, 理学部, 助手 (00322199)
|
研究期間 (年度) |
2005 – 2006
|
研究課題ステータス |
完了 (2006年度)
|
配分額 *注記 |
3,500千円 (直接経費: 3,500千円)
2006年度: 2,000千円 (直接経費: 2,000千円)
2005年度: 1,500千円 (直接経費: 1,500千円)
|
キーワード | contragradient Lie超代数 / Enright functor / N=1Virasoro超代数 / Fusion代数 / 楕円曲線 / seini-stable / principal bundle / 巾害軌道 / Lie超代数 / 中心拡大 / Tilting Equivalence / semi-infinite character / critical dimension |
研究概要 |
この研究により得られた結果は以下の通り。 まず、contragradient Lie超代数に対し、Emright functorを定義し、その性質を調べた。特に、対称化可能なKac-Moody超代数の場合には、heuristicな議論でのみ知られていたVerma加群のsingular vectorの公式の厳密な証明を与え、更に、Verma加群の間の非自明な射の空間の次元がほとんどの場合に、1以下になることを示した。また、これらのfunctorが、Braid relationを満たすことも示せた。これについては、現在、論文を執筆中である。 次に、有限次元単純Lie超代数の超可換な環による係数拡大に有限Abel群が自己同型として作用する場合、その固定部分空間のなすLie超代数の普遍中心拡大の構造をいくつかの場合に、完全に決定した。この計算は引き続き行われている。 更に、N=1Virasoro超代数(Ramond sectorを含む)のFusion代数の完全な記述を与える為に必要な結果が揃った。現在、それらを用いて具体的にFusion代数の明示的な表示を得るべく、計算を実行中である。 最後に、毛色の異なる話であるが、楕円曲線X上のsemi-stable主G束の回型類の分類を得た。これは、Q^Vをco-root latticeとし、WをWeyl群とするとき、coarse moduliへの全射X・Q^V→X【cross product】Q^V/Wのcritical value以外の点では1点、critical valueの点の上では、その分岐の定めるデータから決まるGのLi環の部分Lie環のnilpotent orbitでparametrizeされる。この結果については、論文を執筆中である。
|