研究概要 |
細胞の誘電泳動特性の評価について詳細に検討し,ネガティブ誘電泳動の作用する周波数領域を調査した.この結果を基に,ネガティブ誘電泳動による細胞の大量一括で迅速なライン配列技術を確立できた.ネガティブ誘電泳動を利用すると細胞は電場強度の弱い方向に移動するため,電場強度の強い電極表面へ接触することなく配列させることが可能であった.電極に交流電圧を印加して1分程度での細胞ラインの形成が可能であった.3-5分間電圧印加状態を保持すると細胞は基板表面に付着した.さらに,デバイスを電極基板と細胞配列基板に分離し,配列化細胞を培養することができた.細胞配列に要する印加電圧,周波数および印加時間と細胞のバイアビリティーの関連について詳細に評価できた. また,細胞の電極表面への接触による破裂,電極の汚染を低減させるために電極表面をアモルファスフッ素樹脂の薄膜でコーティングすることにより,ポジティブ誘電泳動による電極表面での細胞のペアリングおよび数珠状の細胞ワイヤを創製できた. 上下の基板にくし型マイクロバンドアレイ電極を配置した3次元アレイ電極を用いたネガティブ誘電泳動により細胞をバンドの格子点にドット状に配列できた.さらに,上下基板の4本のバンド電極で構成されるグリッド内へ細胞を捕捉し回転させることができた.これは,4本の電極へ印加する交流電圧の周波数を90度ずつ位相をずらすことにより達成された.この方法を用いると大量の細胞を一括で回転させることができるため,1回の実験で細胞膜表面の特性を統計学的に高精度で解析可能となる.実際に,細胞膜に提示された表面タンパク質(CD7)を発現しているヒトTリンパ種および発現していないヒト単球では,同周波数条件で回転速度が異なった.この研究課題を遂行するにあたり誘電泳動の新たな応用展開を多方面で示した.
|