研究概要 |
本研究では従来より振動切削に用いられている振動周波数(主に20kHz)に対して一桁以上高周波となる数百kHz〜1MHz程度の低振幅振動(0.1〜1μm_<p-p>)を工具刃先に付加する振動切削加工技術の実現に挑戦する.本年度の研究では,有限要素解析技術を用いて,縦振動とたわみ振動を200kHz以上の高周波で組み合わせることのできる振動工具の設計を行い,試作装置の振動特性について評価を行った.また,別途開発を行ってきた40kHzの振動装置を用いて焼結金属(タングステン合金)に対する加工特性評価実験,および超精密金型の試作を行った.さらに試作した金型を用いてガラス部品の成形試験を行い,本手法の実用性について評価を行った.以下に得られた成果および知見を示す. (1)有限要素解析技術を利用して2次の縦振動と4次のたわみ振動の共振周波数がともに200kHzとなる超音波楕円振動子の設計を行った.実際に振動子の試作を行い振動特性の評価を行った結果,たわみ振動の共振周波数が181kHz,縦振動が208kHzとなり,27kHzのずれが生じることがわかった.また,約200kHz付近で駆動することにより0.1μm_<p-p>の楕円振動を発生できることを確認した. (2)40kHzの超音波楕円振動装置を用いてタングステン合金の超精密加工実験を行った.近似2次元切削実験の結果,1μm前後の切取り厚さが延性-脆性の臨界条件となり,0.2μmの切取り厚さにおいても連続型の切りくずが生成されることを確認した. (3)上記の振動装置を用いてタングステン合金性の金型を試作し,良好な形状精度と仕上げ面性状を両立できることを確認した.さらに,試作した金型を用いて光学ガラスの成形を行った結果,微細形状が精密に転写され良好なガラス部品を成形可能であることを確認した.
|