研究課題/領域番号 |
17K05304
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
研究分野 |
解析学基礎
|
研究機関 | 熊本大学 |
研究代表者 |
金 大弘 熊本大学, 大学院先端科学研究部(工), 教授 (50336202)
|
研究分担者 |
桑江 一洋 福岡大学, 理学部, 教授 (80243814)
|
研究期間 (年度) |
2017-04-01 – 2020-03-31
|
研究課題ステータス |
完了 (2019年度)
|
配分額 *注記 |
3,900千円 (直接経費: 3,000千円、間接経費: 900千円)
2019年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2018年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2017年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
|
キーワード | 確率論 / 確率解析 / 確率過程論 / ディリクレ形式論 / Feynman-Kac functionals / Lp independence / scattering length / semi-classical limit / random environment / Feynman-Kac semigroup / gaugeability / stablity / discrete spectrum / Schrodinger operator / 解析学 / シュレディンガー形式 / 重み付き確率過程 / 加法汎関数 |
研究成果の概要 |
本研究では、必ずしも有界変動ではない加法汎関数までを含む一般化されたファインマン・カッツ汎関数の重みをもつ対称マルコフ過程に関する大域的性質とその周辺問題に対して、シュレディンガー形式論という直接的な解析的相対概念を定式化することで、新しくより見通しの良い関数解析学的理論の展開を構築することができた。また、その応用として、シュレディンガー作用素に関する最大値原理やその半群のコンパクト性およびスペクトル半径のLp-独立性について新しい結果を得た。
|
研究成果の学術的意義や社会的意義 |
マルコフ過程における確率論的諸問題をディリクレ形式論やポテンシャル論のような解析学的な観点からみると、確率論的概念における数多くの解析的相対概念が上手く対応している。これは、M. Silverstein 氏や福島正俊氏による一連の先駆的な仕事から初めて指摘され、この分野における近年の研究においても引き継がれている。本研究成果は、このようなトレンドを引き継いだものであり、広い視野でみると確率論と解析学の両方に対する分野横断的研究でもある。確率論と解析学を跨ぐ研究は両分野の理論体系をより豊かにするだけではなく、その周辺問題への応用の範囲も広くしたことに意義がある。
|