研究課題/領域番号 |
17K05360
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
研究分野 |
数学基礎・応用数学
|
研究機関 | 一橋大学 |
研究代表者 |
齊木 吉隆 一橋大学, 大学院経営管理研究科, 教授 (20433740)
|
研究期間 (年度) |
2017-04-01 – 2021-03-31
|
研究課題ステータス |
完了 (2020年度)
|
配分額 *注記 |
4,420千円 (直接経費: 3,400千円、間接経費: 1,020千円)
2019年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2018年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2017年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
|
キーワード | 力学系 / 準周期軌道 / バーコフ平均 / 高速計算 / 重み付きバーコフ平均 / ヘテロカオス / 時間遅れ埋め込み / 回転数 / ジーゲル板 / ジーゲル球 / 位相共役 / フーリエ級数 / 凖周期軌道 / カオス / 数値解析 / 数値解析学 / モンテカルロ法 |
研究成果の概要 |
決定論的力学系のダイナミクスは、周期軌道、準周期軌道、カオス軌道の3種類に分類されると考えられる。準周期軌道とは無理数回転と共役なふるまいであり、特に保存力学系における準周期軌道の重要性は良く知られていた。準周期軌道は回転数(無理数回転)、リアプノフ指数(ゼロリアプノフ指数)などを用いて特徴づけられるが、これらの量は準周期軌道上バーコフ平均として計算できる。本研究では準周期軌道上で定義される関数に対するバーコフ平均に関して、研究代表者らは、従来手法の1000倍程度以上(4倍精度の場合)の高速化を実現する重み付きバーコフ平均を提案してその有用性を複数の例で確認するとともに各種性質を明らかにした。
|
研究成果の学術的意義や社会的意義 |
回転数、リアプノフ数などをはじめとしてバーコフ平均は力学系の軌道に関するさまざまな量に関わっている。軌道長Nのバーコフ平均の収束スピードは一般に1/Nのオーダーであり実際に計算で準周期性の判断をすることは困難であった。しかし、研究代表者らは、準周期軌道上のバーコフ平均に対しては、理論的には1/(Nに関する任意の多項式)よりも速く収束する重み付きバーコフ平均を提案してその応用可能性を示した。
|