研究課題/領域番号 |
17KK0087
|
研究種目 |
国際共同研究加速基金(国際共同研究強化)
|
配分区分 | 基金 |
研究分野 |
素粒子・原子核・宇宙線・宇宙物理
|
研究機関 | 東京大学 |
研究代表者 |
山崎 雅人 東京大学, カブリ数物連携宇宙研究機構, 教授 (00726599)
|
研究期間 (年度) |
2018 – 2022
|
研究課題ステータス |
完了 (2022年度)
|
配分額 *注記 |
11,050千円 (直接経費: 8,500千円、間接経費: 2,550千円)
|
キーワード | 可積分系 / 位相的場の理論 / チャーン・サイモンズ理論 / チャーン=サイモンズ理論 / 超弦理論 / チャーン=サイモンズ理論 / 格子模型 / 場の理論 / チャーンサイモンズ理論 / 素粒子理論 / 数理物理 / ゲージ理論 |
研究成果の概要 |
ぺリメータ研究所のKevin Costello氏と共同研究を行い,その成果を100ページにも達する長大な論文として発表した. (1)可積分場の理論の古典的な可積分性を解明した (2)既知の可積分系模型の多くを導出すると同時に、例えばその楕円型の変形、また共形対称性を破る変形など、様々な変形を議論した(3)種数が高い一般のリーマン面に付随した一般的な古典可積分系を構成し、さらにリーマン面を切りはりしたときに対応する可積分系模型で何が起こるかを解明した (4) Quiver Yangianという新たな可積分構造を発見し、その表現を構成した.
|
研究成果の学術的意義や社会的意義 |
可積分系は物理的に興味のある量を厳密に解くことができる特殊な模型であり,可積分系を超えたより一般の理論を理解する上での出発点ともなるとても貴重なクラスの理論である.可積分系については物理・数学の双方の立場から数多くの研究がなされてきたが,個別の具体例の解析にとどまっていることがほとんどであった.本研究の成果により,可積分性の根源的な起源が場の理論の立場から明らかにされ,場の理論を一つの枠組みの中で系統的に議論することが可能になった.
|