研究課題
若手研究(スタートアップ)
有理数体に1の3乗根を添加して得られる虚二次体をKとおく。K上、立方剰余記号がGaussにより導入され、更にEisensteinにより同記号の相互剰余法則が証明された。立方剰余記号に付随するK上のHecke L関数を以下、cubic L関数と呼ぶ。現在cubic L関数の解析的側面からの研究はW.LuoによるNon-vanishing問題やH.Xiaによる零点密度定理などが知られている。以前、私は名越弘文氏と共にGaussの平方剰余相互律を用いる事で平方剰余記号に付随するDirichlet L関数の普遍性を証明する事に成功した。その過程で得た手法を元に、今年度cubic L関数の値分布の研究に着手した。その結果、Eisensteinの立方剰余相互法則とD.R.Heath-Brownの立方剰余記号についてのlarge sieve inequalityを応用することによりcubic L関数の普遍性を証明する事に成功した。その主張は「与えられたコンパクト領域CとC上の正則関数f(s)に対し、適当な立方剰余記号を選ぶと、対応するcubic L関数によりf(s)はC上一様近似できる」というものである。又、数論的ゼータ関数のs=1での特殊値が代数的な量を表すことに着目し、普遍性の応用として、K上の3次拡大体の類数分布の稠密性を証明する事に成功した。以上の結果を平成20年10月ドイツで開催されるコンファレンス"NEW DIRECTIONS IN THE THEORY OF UNIVERSAL ZETA-ANDL-FUNCTIONS"で報告する予定である。
すべて 2007 その他
すべて 雑誌論文 (2件) (うち査読あり 1件)
Lithuanian Mathematical Journal Vol.47,no.1
ページ: 32-47
Archiv der Mathematik (掲載確定)