• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

機械学習と高性能計算の相乗効果によるソフトウェア最適化

研究課題

研究課題/領域番号 18F18786
研究種目

特別研究員奨励費

配分区分補助金
応募区分外国
研究分野 高性能計算
研究機関東京大学

研究代表者

須田 礼仁  東京大学, 情報理工学(系)研究科, 教授 (40251392)

研究分担者 VATAI EMIL  東京大学, 情報理工学(系)研究科, 外国人特別研究員
研究期間 (年度) 2018-11-09 – 2021-03-31
研究課題ステータス 採択後辞退 (2020年度)
配分額 *注記
1,500千円 (直接経費: 1,500千円)
2020年度: 400千円 (直接経費: 400千円)
2019年度: 700千円 (直接経費: 700千円)
2018年度: 400千円 (直接経費: 400千円)
キーワード通信削減アルゴリズム / matrix powers kernel / parallel computing / sparse matrix / spMV / iterative methods / 深層学習 / Dense layer / Pruning / データ圧縮
研究実績の概要

We implemented DMPK (Diamond Matrix Powers Kernel) with parallelization of MPI and optimized assignment of tasks to processors. We also analyzed the amount of communication and redundant computation when using different number of phases and compared them to PA1 and PA2, which are the known methods of matrix powers kernel. These results been presented at HPCAsia2020 in Fukuoka.
Matrix Powers Kernel (MPK) algorithms calculate the vector Akx, obtained by multiplying an initial vector x with the k-th power of matrix A. Our algorithm, Diamond Matrix Powers Kernel (DMPK) generalizes the MPK algorithms PA1 and PA2 by Demmel et al. PA1 and PA2 can be used for general matrices. They improve performance by reducing the amount of communication, which is often the bottleneck, but they introduce redundant computations. In scientific computations with regular access patterns, diamond tiling algorithms achieve similar communication avoidance without introducing any redundant communication by introducing moving index domains. By combining these two approaches, DMPK, is applicable to general matrices and makes it possible to reduce the amount of redundant computation at the price of slightly higher amount of communication. This is done by translating the concept of moving index domains to general matrices: the algorithm is performed in “phases” and after each phase the graph (corresponding to the matrix) is repartitioned.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

We are actively developing a new MPK algorithm which improves on our previous result by removing redundant computations altogether. The idea is to allow the transmission of partially computed vertices, hence the name Partial DMPK (PDMPK). The new algorithm requires more elaborate management of communication and computation patterns. It has difficulties finding new partitions for larger matrices. It also has a negative effect on the amount of communication and we are looking for ways to reduce it. Another requirement of PDMPK are a mirroring and a weight update algorithm. The mirroring algorithm transfers the vertices to their initial partitions which allows the PDMPK be useful in the long run. The weight update algorithm is needed by METIS to transform the vertex levels to edge weights. The current implementation supports easy swapping of these algorithms, but we have not yet found the optimal ones.

今後の研究の推進方策

We are looking for good mirroring and weight update algorithms which are able to handle all matrices.
Also, the program is not yet optimized and we are looking for ways to implement optimizations so it can reach state of the art performance. The required optimizations include implementing communication hiding and multi-core processing next to the MPI communication. We already have ideas how to implement communication hiding using MPI asynchronous calls at each level. The multi-core optimization can follow existing methods, since the computation/execution part basically performs regular SpMV operations.
For realistic comparison in performance, we plan to incorporate (P)DMPK into existing (optimized) libraries with linear solvers, such as PETSc.
Another point of optimization is the preparation program, which needs to be run only once (per matrix), but it does a significant amount of computation and is currently only a single thread program.

報告書

(2件)
  • 2019 実績報告書
  • 2018 実績報告書
  • 研究成果

    (2件)

すべて 2020 その他

すべて 国際共同研究 (1件) 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件)

  • [国際共同研究] Indian Institute of Technology, Delhi(インド)

    • 関連する報告書
      2019 実績報告書
  • [雑誌論文] Diamond matrix powers kernels2020

    • 著者名/発表者名
      Vatai Emil、Singhal Utsav、Suda Reiji
    • 雑誌名

      HPCAsia2020: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region

      巻: 1 ページ: 102-113

    • DOI

      10.1145/3368474.3368494

    • 関連する報告書
      2019 実績報告書
    • 査読あり / 国際共著

URL: 

公開日: 2018-11-12   更新日: 2024-03-26  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi