研究課題/領域番号 |
18J00305
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
研究分野 |
幾何学
|
研究機関 | 京都大学 |
研究代表者 |
辻 俊輔 京都大学, 数理解析研究所, 特別研究員(PD)
|
研究期間 (年度) |
2018-04-25 – 2021-03-31
|
研究課題ステータス |
完了 (2020年度)
|
配分額 *注記 |
3,640千円 (直接経費: 2,800千円、間接経費: 840千円)
2020年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2019年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2018年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
|
キーワード | 量子不変量 / 写像類群 / 有限型不変量 / ジョンソン準同型 / スケイン代数 |
研究実績の概要 |
令和元年度の研究では、テュラエフが1990年に導入したあるスケイン代数(ここでは、ブラケット・スケイン代数と呼ぶ)を用いた研究が中心であった。令和元年度の研究では、ブラケット・スケイン代数の値をとるホモロジー・シリンダーの不変量を構成した。この不変量は、ホモロジー・シリンダーの完備基本群への作用と同値である。 このブラケット・スケイン代数での研究は、基本群の研究の新たなアプローチとして評価できるが、基本群の情報しか持たないことが問題点である。令和2年度の研究では、他のスケイン代数でホモロジー・シリンダーの不変量を構成することができた。この不変量は、カウフマン・ブラケット・スケイン代数や、HOMFLY-PTスケイン代数で構成ができた。カウフマン・ブラケット・スケイン代数でのホモロジー・シリンダーの不変量は基本群のsl(2) 表現と sl(2) 大槻級数二つの情報を持つことが分かった。さらに、HOMFLY-PT スケイン代数でのホモロジー・シリンダーの不変量は基本群の情報と sl(N)大槻級数すべての情報を持つことが分かった。このように、これらのスケイン代数でのホモロジー・シリンダーの不変量は量子トポロジーの情報も持っている。 この不変量は、二つの側面を持つ。一つ目は、ブラケット・スケイン代数の不変量を精密化していることである。二つ目は、整係数ホモロジー球面の不変量である大槻級数をホモロジー・シリンダーに拡張したという側面である。実際、このスケイン代数の不変量の構成の仕方は、整係数ホモロジー球面の集合を閉円盤を底面とするホモロジー・シリンダーの集合とみなした時に、カウフマン・ブラケット・スケイン代数でのホモロジー・シリンダーの不変量は sl(2) 大槻級数と一致し、さらに、HOMFLY-PTスケイン代数でのホモロジー・シリンダーの不変量を全てのsl(N)大槻級数と一致する。
|
現在までの達成度 (段落) |
令和2年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
令和2年度が最終年度であるため、記入しない。
|