研究課題
特別研究員奨励費
本研究では,化学反応に関する情報をデータベースとして保存し,それを流体計算に使用する手法(Flamelet/Progress-Variable, FPV法)を固気二相流に拡張することで,低計算負荷かつ高精度な固気二相流の数値解析を実現した.昨年度,拡張したFPV法の精度を検証するため,固気反応と気相反応が混在する系のうちの一つである微粉炭の拡散火炎の計算を実施し,その結果を化学反応の解析方法として最も精度が高いとされる詳細化学反応機構を用いた場合の結果と比較した.その結果,FPV法を用いることにより,詳細化学反応機構と同等の精度の計算を,わずか数十分の一の計算時間で実施可能になることがわかった.さらに実体系への適用性について確認するため,昨年度,構築した乱流の高精度な解析方法と組み合わせて微粉炭燃焼の三次元非定常乱流シミュレーションを実施した.FPV法は微粉炭粒子の飛行挙動や化学種の体積分率の実験値を表現可能であり,従来使用していたモデルと比較して計算精度が大幅に向上した.これは,構築したデータベースが微粉炭の実用燃焼器内で想定されるさまざまな化学反応を記述可能であることを示す結果であり,本手法により窒素酸化物といった生成量が微量な環境汚染物質の予測も可能になることを示唆している.比較対象とする実験値の測定精度の関係上,今回は小型のモデルバーナーを対象としたが,FPV法の特徴の一つである計算負荷低減の効果により,パイロットスケールや実用規模の燃焼炉も現実的な負荷で計算可能になると考える.したがって,今回,構築したモデルを用いることで,次世代の固体炭素資源の利用技術の開発期間が短縮することが期待できる.
令和元年度が最終年度であるため、記入しない。
すべて 2020 2019 2018 その他
すべて 国際共同研究 (2件) 雑誌論文 (4件) (うち査読あり 4件、 オープンアクセス 1件) 学会発表 (6件) (うち国際学会 2件)
Fuel Processing Technology
巻: 199 ページ: 106226-106226
10.1016/j.fuproc.2019.106226
Advanced Powder Technology
巻: in press 号: 3 ページ: 1302-1322
10.1016/j.apt.2019.12.019
日本エネルギー学会誌
巻: 98 号: 3 ページ: 35-43
10.3775/jie.98.35
130007626834
Energy & Fuels
巻: 32 号: 11 ページ: 11304-11309
10.1021/acs.energyfuels.8b02717