• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

幾何学的流の幾何解析

研究課題

研究課題/領域番号 18K03291
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分11020:幾何学関連
研究機関大阪大学

研究代表者

石田 政司  大阪大学, 大学院理学研究科, 教授 (50349023)

研究期間 (年度) 2018-04-01 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
4,550千円 (直接経費: 3,500千円、間接経費: 1,050千円)
2022年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2021年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2020年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2019年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2018年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
キーワード一般化された幾何学 / 一般化されたリッチフロー / 一般化されたリッチソリトン / ハルナック不等式 / G2構造 / リッチフロー / ソボレフ不等式 / 簡約体積 / B場繰り込み群流 / ヤングミルズフロー / 単調性公式 / リッチ流 / アインシュタイン計量
研究実績の概要

研究成果は以下のように要約される。(1)Generalized Ricci flowに沿った非線形を持つ共役熱方程式の解に対する微分Harnack不等式を証明した。この結果は、Ricci flowに対して証明されていた非線形共役熱方程式の解に対する微分Harnack不等式の自然な拡張になっている。また、Ricci flowに沿った線形共役熱方程式の解に対する微分Harnack不等式は二つのタイプが存在しているが、二つのうち一つのタイプの微分Harnack不等式についてもGeneralized Ricci flowの場合に拡張した。(2) Generalized Ricci flowの自己相似解であるgradient generalized Ricci solitonの自明性に関する研究を行った。ここでsolitonが自明とはポテンシャル関数が定数となる場合のことを指す。閉多様体上のgradient generalized Ricci solitonは、最近の研究により、steadyの場合以外、即ちshrinkingまたはexpandingの場合は従来のgradient Ricci solitonになってしまうことが判明しており、Generalized Ricci flowの自己相似解としてはsteadyの場合が特に興味深い研究対象となっている。閉多様体上のsteady generalized Ricci solitonが自明であるための必要十分条件を求めた。さらに、完備な非コンパクト多様体上でも、steady generalized Ricci solitonが自明であるための必要十分条件を求めた。 (3)昨年度行ったG2-Laplacian flowに関する研究の応用として、スカラー曲率の有界性の下、G2-Laplacian flowに沿った多様体の直径評価を証明した。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

研究成果(1)については、二つのタイプのうち片方の微分Harnack不等式が未知のものとして残ってはいるものの、もう片方のタイプの微分Harnack不等式を証明できたことは意義がある。研究成果(2)については、特に完備な非コンパクト多様体上のsteady generalized Ricci solitonの構造についての系統的な研究はこれまでほとんど行われておらず、特に新規性が高いと考えられる。 研究成果(3)については、昨年度行った研究成果の興味深い応用としてG2-Laplacian flowに沿った多様体の直径評価を証明できたことは意義がある。

今後の研究の推進方策

Generalized Ricci flowに沿った線形共役熱方程式の解に対する片方のタイプの微分Harnack不等式の証明が、今後の研究の推進には欠かせない。これまで整備してきたgeneralized reduced volumeの理論の主たる応用として証明を完成させることを目指す。さらに、完備な非コンパクト多様体上のsteady generalized Ricci solitonの構造およびG2-Laplacian flowの研究に関してもまだやるべきことが多く残されているので、その研究にも注力する。

報告書

(6件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 2021 実施状況報告書
  • 2020 実施状況報告書
  • 2019 実施状況報告書
  • 2018 実施状況報告書
  • 研究成果

    (3件)

すべて 2019

すべて 学会発表 (3件) (うち国際学会 1件、 招待講演 3件)

  • [学会発表] L-lengh, reduced volume, and B-field renormalization group flow2019

    • 著者名/発表者名
      石田政司
    • 学会等名
      The Fifth Japan-China Geometry Conference
    • 関連する報告書
      2019 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Renormalization group soliton2019

    • 著者名/発表者名
      石田政司
    • 学会等名
      淡路島幾何学研究集会2019
    • 関連する報告書
      2018 実施状況報告書
    • 招待講演
  • [学会発表] Monotone quantities for the Ricci Yang-Mills flow2019

    • 著者名/発表者名
      石田政司
    • 学会等名
      2019名城幾何学研究集会「多様体上の種々の幾何構造の融合」
    • 関連する報告書
      2018 実施状況報告書
    • 招待講演

URL: 

公開日: 2018-04-23   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi