研究課題/領域番号 |
18K13864
|
研究種目 |
若手研究
|
配分区分 | 基金 |
審査区分 |
小区分23010:建築構造および材料関連
|
研究機関 | 北九州市立大学 |
研究代表者 |
藤田 慎之輔 北九州市立大学, 国際環境工学部, 准教授 (80775958)
|
研究期間 (年度) |
2018-04-01 – 2021-03-31
|
研究課題ステータス |
完了 (2020年度)
|
配分額 *注記 |
4,160千円 (直接経費: 3,200千円、間接経費: 960千円)
2020年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2019年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2018年度: 1,690千円 (直接経費: 1,300千円、間接経費: 390千円)
|
キーワード | 加速勾配法 / 全ポテンシャルエネルギー最小化 / 剛性方程式 / 大規模問題 / スカイライン法 / ラインサーチ / 材料非線形 / 大規模非線形問題 / 適応再スタート付き加速勾配法 / 幾何学的非線形 / 複合非線形 |
研究成果の概要 |
構造物の釣り合い変位を求める方法として,直接法と間接法の2種類があり,後者のアルゴリズムに適応再スタート付加速勾配法(以下,AGM)を適用した時の有効性を様々な数値実験を通じて検証した。その結果,勾配法の収束性能はステップ幅の決定方法に大きく左右され,AGMを適用する場合は固定ステップ幅とするほうが計算効率が高く,大規模問題になればなるほど,固定ステップ幅を採用したAGMは他のアルゴリズムと比較して早期に釣り合い変位に到達できることが確認された。また,上記の結果は材料非線形問題においても一般性を損なわないことが確かめられた。
|
研究成果の学術的意義や社会的意義 |
本研究では,適応再スタート付加速勾配法により全ポテンシャルエネルギー最小化を行うことによって釣り合い変位を求めれば,規模の大きな問題に対しては従来の方法よりも計算時間を短縮できる可能性が示された。このことは,近年,益々形態が複雑化・大規模化する建築構造物に対して,非線形解析を短時間で行うことは困難となりつつある状況に対して,計算時間の肥大化を抑え,設計プロセスにおけるトライアル・アンド・エラーの機会を確保する一助となることが期待される。
|