研究課題/領域番号 |
19540178
|
研究種目 |
基盤研究(C)
|
配分区分 | 補助金 |
応募区分 | 一般 |
研究分野 |
基礎解析学
|
研究機関 | 静岡大学 |
研究代表者 |
佐藤 宏樹 静岡大学, 理学部, 教授 (40022222)
|
研究分担者 |
奥村 善英 静岡大学, 理学部, 准教授 (90214080)
|
連携研究者 |
奥村 善英 静岡大学, 理学部, 准教授 (90214080)
李 長軍 中国海洋大学, 数学, 副教授
|
研究期間 (年度) |
2007 – 2009
|
研究課題ステータス |
完了 (2009年度)
|
配分額 *注記 |
2,730千円 (直接経費: 2,100千円、間接経費: 630千円)
2009年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2008年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2007年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
|
キーワード | 複素解析 / クライン群 / リーマン面 / ショットキイ群 / ヨルゲンセン群 / ヨルゲンセン数 / 三角群 / ヘッケ群 / 関数論 / 古典的ショットキイ群 / ヨルゲンセンの不等式 / リーマン面の一意化 |
研究概要 |
メービウス変換群の部分群が離散群であるかどうかを判定することはクライン群の理論における重要な問題である。その必要条件としてヨルゲンセンの不等式がある。等号が成り立つクライン群をヨルゲンセン群という。前回の3部作を今回補完することによりすべての放物型ヨルゲンセン群を発見することに成功した。また、三角群のヨルゲンセン数を多くの場合(ヘッケ群、放物型群等)決定することに成功した。
|