研究課題
若手研究(B)
私の研究課題は、様々なゲノム関連データを用いて、生体分子(遺伝子やタンパク質、化合物)間の機能的ネットワークの予測法の開発である。主に以下の3点について成果が得られた。遺伝子やタンパク質に関する様々なゲノム関連情報(発現情報、細胞内局在情報、進化情報など)を用いて、遺伝子間の機能ネットワークを予測するシステムGENIESを構築した。複数のデータ統合とカーネル法に基づく教師付き学習のアルゴリズムを実装している点が特長である。現在、オンラインソフトウェアが利用可能となっている(URLは以下の13.備考を参照)。糖鎖という生体分子の構造を、糖鎖転移酵素の遺伝子発現情報から予測する手法を開発した。糖鎖構造を、糖鎖転移酵素とその連続触媒反応から構成されるネットワークの生成物と考え、無向グラフと有向グラフが混在したデータ構造として扱った。連続値の発現データを入力データとして、未知の構造や中間体の予測ができるアルゴリズムが特長である。ガン特異的な糖鎖構造の予測へ応用した成果は、Genome Informatics誌で発表し、現在Webサーバーを構築中である。化合物の構造情報から、その化学反応を予測し、対応する酵素番号(EC番号)を予測する手法を開発した。我々のグループが提唱しているRDMという化学反応分類体系とEC番号の相関をカーネル関数で表現し、それをスコアリングの手順に取り入れることによって、大幅な予測精度の向上を実現した。その手法を実装した化学反応予測システムE-ZYMEを構築し、またNucleic Acids Research誌で発表された最新のKEGGデータベースの論文中にも紹介されている。現在、オンラインソフトウェアが利用可能となっている(URLは以下の13.備考を参照)。
すべて 2008 2007 その他
すべて 雑誌論文 (2件) (うち査読あり 2件) 学会発表 (1件) 備考 (2件)
Nucleic Acids Research 36(In press)
Genome Informatics 18(1)(In press)
130003812147
http://www.genome.jp/SIT/genies/
http://www.genome.jp/ligand-bin/predict_reaction2.cgi