研究実績の概要 |
During the period April 2020-March 2021, together with my collegue Teruhisa Koshikawa, we developed a relative version of A_Inf-cohomology. First some background: Given a proper smooth formal scheme X over the ring of integers, Bhatt-Morrow-Scholze constructed a complex of A_Inf-modules which specializes to other p-adic cohomology theories (their work published in 2018). In recent work of Koshikawa and myself we generalize this construction to the relative situation. In short, this means that for a smooth morphism of p-adic formal schemes f: X -> Y, we construct a complex (using the decalage functor) living on the pro-etale site of the adic generic fiber of Y, which interpolates the de Rham complex. Although, our methods are similar to that of Bhatt-Morrow-Scholze, there is the appearance of a new object in this setup: fibered product of topoi. One difference in this setup (compared to BMS) is that results are only possible up to almost ambiguity (due to almost non-zero elements in higher cohomology groups for the pro-etale topology). One consequence of our work is the existence of a relative Hodge-Tate spectral sequence which generalizes the ones constructed by Caraiani-Scholze (dvr setting) et Abbes-Gros (scheme setting). Moreover we compare our relative A_Inf-cohomology with the prismatic/q-crystalline theory developed by Bhatt-Scholze.
|