研究課題/領域番号 |
19F19028
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 外国 |
審査区分 |
小区分13010:数理物理および物性基礎関連
|
研究機関 | 国立研究開発法人理化学研究所 |
研究代表者 |
NORI FRANCO 国立研究開発法人理化学研究所, 開拓研究本部, 主任研究員 (50415262)
|
研究分担者 |
CHEN YEHONG 国立研究開発法人理化学研究所, 開拓研究本部, 外国人特別研究員
|
研究期間 (年度) |
2019-10-11 – 2022-03-31
|
研究課題ステータス |
完了 (2021年度)
|
配分額 *注記 |
2,200千円 (直接経費: 2,200千円)
2021年度: 400千円 (直接経費: 400千円)
2020年度: 1,100千円 (直接経費: 1,100千円)
2019年度: 700千円 (直接経費: 700千円)
|
キーワード | quantum computing / cat-state qubits / fault-tolerant computing / optical dark mode / quantum electrodynamics / ultrastrong coupling / quantum control methods / Ultrastrong systems / Shortcuts to / adiabaticity / Rapid dynamical / evolution |
研究開始時の研究の概要 |
(1)Developingaccelerated dynamics for open systems. For an open quantum system modeled by the Lindblad-Markovian master equation, we plan to develop two ways to accelerate the dynamics: an analytical one and a nonanalytic one. (2)Applyingaccelerated dynamics tooptomechanical systems. We plan to study howto develop accelerated dynamics for optomechanical cavity systemswithmembranes. (3)Applyingaccelerated dynamics tospin chain systems. We plan to accelerate some quantum adiabatic processes based on spin chain systems.
|
研究実績の概要 |
Since Apr. 2021, we have focused on the following topics: 1. Using cat-state qubits for geometric quantum computing. We have investigated the possibility of using photonic cat-state qubits for implementing single- and multi-qubit geometric gates. Our results offer a realistic and hardware-efficient method for both single- and multi-qubit fault-tolerant quantum computation. 2. We have theoretically shown that employing counter-rotating effects (using two different protocols) can effectively improve both the speed and fidelity of geometric quantum computation. Such an ultrafast evolution (nanoseconds, even picoseconds) significantly reduces the influence of decoherence, making it possible to reach the threshold of fault-tolerant computing. 3.We have explored an efficient protocol to sense single atoms in a cavity field using a nonlinear classical drive. The proposed protocol possesses many advantages, such as controllable squeezing strength and squeezed-cavity-mode frequency, and exponential enhancement of atom-cavity coupling strength. 4. We have theoretically proposed to realize a genuine tripartite optomechanical entanglement via the control of an optical dark mode. than that in the DMU regime. The study can enable constructing large-scale entanglement networks with the dark-mode-immunity and noise-tolerance, and opens up a range of exciting opportunities for quantum information processing and quantum metrology protected against dark modes.
|
現在までの達成度 (段落) |
令和3年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
令和3年度が最終年度であるため、記入しない。
|