研究課題/領域番号 |
19J00006
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
審査区分 |
小区分11020:幾何学関連
|
研究機関 | 大阪大学 |
研究代表者 |
和田 康載 大阪大学, 理学研究科, 特別研究員(PD)
|
研究期間 (年度) |
2019-04-25 – 2022-03-31
|
研究課題ステータス |
採択後辞退 (2021年度)
|
配分額 *注記 |
4,030千円 (直接経費: 3,100千円、間接経費: 930千円)
2021年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2020年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2019年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
|
キーワード | 仮想絡み目 / ウェルデッド絡み目 / Dabkowski-Sahi不変量 / 4-move / CF-move / ミルナー不変量 / 有限型不変量 / ウェルデッドストリング絡み目 |
研究開始時の研究の概要 |
本研究の目的はウェルデッドストリング絡み目の有限型不変量の幾何的特徴付けを与えることである.研究目的を達成する為に,ウェルデッドストリング絡み目のクラスを三つ考え,各々のクラスに対して有限型不変量の幾何学的特徴付けを与えるという手法で段階的に研究を進めてゆく.より具体的な研究計画は以下の通りである. (段階1)ブルニアン型のウェルデッドストリング絡み目の有限型不変量の幾何学的特徴付けを与える. (段階2)各成分が自明であるウェルデッドストリング絡み目の有限型不変量の幾何学的特徴付けを与える. (段階3)ウェルデッドストリング絡み目の有限型不変量の幾何学的特徴付けを与える(すなわち,研究目的の達成).
|
研究実績の概要 |
本年度は、Dabkowski-Sahi不変量と呼ばれる絡み目の不変量を用いて、(ウェルデッド)絡み目に対して4-moveと呼ばれる局所変形に関する研究を行なった。Dabkowski-Sahi不変量は、絡み目補空間の基本群のある商群として定義され、4-moveで不変であるという性質をもつ。この不変量は絡み目を区別するための強力な不変量である。一方で、与えられた二つの絡み目のDabkowski-Sahi不変量が同型か否かを判定することは一般に難しく、その判定法を開発することは重要な課題である。そこで、津田塾大学の宮澤治子氏および早稲田大学の安原晃氏との共同研究で、与えられた絡み目と、自明な絡み目のDabkowski-Sahi不変量が同型であるための必要条件を与えた。そして、与えられた絡み目と自明な絡み目が4-moveで移り合うための必要条件を与えた。これらの結果を絡み目の一般化であるウェルデッド絡み目へ拡張することで、絡み数が0であり、4-moveの有限列で自明な2成分絡み目に移り合えない、2成分ウェルデッド絡み目が存在することを証明した。以上の研究成果は共著論文としてまとめられ、査読付き国際学術雑誌へ現在投稿中である。 また、仮想絡み目に対してCF-moveと呼ばれる局所変形に関する研究も行なった。この局所変形は、T. Oikawaにより導入され、仮想結び目に対する結び目解消操作になることが示された。さらに、2成分仮想絡み目のCF-moveによる分類が与えられた。この結果の拡張として、任意の成分数の奇仮想絡み目および概奇仮想絡み目、そして、3成分偶仮想絡み目のCF-moveによる分類を与えた。これにより、3成分仮想絡み目のCF-moveによる完全分類を与えることに成功した。以上の研究成果は単著論文としてまとめられ、査読付き国際学術雑誌へ現在投稿中である。
|
現在までの達成度 (段落) |
翌年度、交付申請を辞退するため、記入しない。
|
今後の研究の推進方策 |
翌年度、交付申請を辞退するため、記入しない。
|