研究課題/領域番号 |
19J12755
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
審査区分 |
小区分18010:材料力学および機械材料関連
|
研究機関 | 東北大学 |
研究代表者 |
張 秦強 東北大学, 工学研究科, 特別研究員(DC2)
|
研究期間 (年度) |
2019-04-25 – 2021-03-31
|
研究課題ステータス |
完了 (2020年度)
|
配分額 *注記 |
2,300千円 (直接経費: 2,300千円)
2020年度: 1,100千円 (直接経費: 1,100千円)
2019年度: 1,200千円 (直接経費: 1,200千円)
|
キーワード | dumbbell-shape / graphene nanoribbon / strain-controlled / Schottky barrier / interface / strain sensor / dumbbell-shape structure / localized properties |
研究開始時の研究の概要 |
First, developing a new code of simulation techniques for calculating large system. Second, experimental validation of effectiveness of DS-GNR on Si/SiO2 substrate. Third, developing a new method for transferring the patterned DS-GNR from Si/SiO2 substrate to flexible substrate like PDMS.
|
研究実績の概要 |
The gradient Schottky barrier around the atomic seamless interface can be controlled by applying appropriate strain and the stable electronic performance of dumbbell-shape graphene nanoribbon (DS-GNR)-base strain sensors can be obtained regardless of the width of the graphene nanoribbon (GNR) in the sensing segment of DS-GNR. The optimized structure of DS-GNR with metallic-metallic interface around the jointed area exhibits stable piezoresistive property in the narrow segment at lower strain range. It is deemed to the disappearance of the Schottky barrier. However, the complicated strain-induced change behavior appeared in the metallic-semiconductive interface due to the existence of the gradient Schottky barrier around the jointed area at low strain range. The single GNR possesses a large strain range as proved by several previous researchers. In this study, the author found that the large gradient Schottky barrier can be minimized by applying an appropriate tensile strain and the stable performance of DS-GNR with metallic-semiconductive interface can be attained at a larger strain range. The analysis results in this study indicate that it has a great potential to apply DS-GNRs for development of highly sensitive, stable, and reliable next-generation wearable strain sensors for real time health monitoring and smart point of care devices. The strain-induced change of electronic properties of DS-GNR can be applied on other specific applications such as bio-chemical sensors for gas- and viruses- detecting and artificial neuro network by mimicking the human synapse signal.
|
現在までの達成度 (段落) |
令和2年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
令和2年度が最終年度であるため、記入しない。
|