研究課題/領域番号 |
19J14449
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
審査区分 |
小区分15010:素粒子、原子核、宇宙線および宇宙物理に関連する理論
|
研究機関 | 東京工業大学 |
研究代表者 |
秋田 謙介 東京工業大学, 理学院, 特別研究員(DC2)
|
研究期間 (年度) |
2019-04-25 – 2021-03-31
|
研究課題ステータス |
完了 (2020年度)
|
配分額 *注記 |
1,900千円 (直接経費: 1,900千円)
2020年度: 900千円 (直接経費: 900千円)
2019年度: 1,000千円 (直接経費: 1,000千円)
|
キーワード | 初期宇宙 / 宇宙背景ニュートリノ / 直接観測 / トリチウム / 精密計算 |
研究開始時の研究の概要 |
インフレーションと呼ばれる初期宇宙の加速膨張は宇宙論の諸問題を解決し、観測から支持されていることから、その存在は疑いようがありません。しかし、これを記述する模型は無数に提案され、一意に決めることはできません。本研究では、未発見の観測量に注目し、これらの模型と今後の観測との関係を調べます。更に、バリオン非対称性や暗黒物質の起源の解明といった宇宙論の他の諸問題とも整合した適切な模型を特定します。 このために、複数のインフレーション模型を統一的に扱える模型を用いて、観測量との関係やその後の初期宇宙との関係を網羅的に、より一般的に調べ、今後の観測結果をすぐに反映できるようにします。
|
研究実績の概要 |
宇宙背景ニュートリノ(CνB)は初期宇宙で生成され、現在の宇宙に存在すると考えられているニュートリノで、これは宇宙誕生から約1秒後の宇宙の情報を私たちにもたらすと期待されています。そして、CνBの直接観測は、CνBが現在の宇宙に存在しているかを確かめるだけではなく、宇宙背景放射(CMB)と相補的に、標準模型を超えた物理に関するより詳細な情報も得ることができると考えられます。そこで、CνBスペクトラムを精密に直接観測する手法について考察を行いました。 CνBの直接観測によって、CMBとは異なる初期宇宙の詳細な情報を手に入れるため、トリチウムを用いた直接観測実験の精密な定式化を行いました。まず、逆β崩壊過程によるニュートリノとトリチウムの反応率を1%の精度で定式化しました。このとき、前年度の研究で求めた脱結後の一様等方なニュートリノスペクトラムと地球の近辺にある銀河の引力による集積の効果を組み合わせ、現在の宇宙でのCνBの数密度を1%程度の精度で評価を行いました。そして、これらの結果を用いて、反応率を1%の精度で実際のこの直接観測実験で測定するために必要なトリチウムの量を評価しました。また、CνBの観測可能性を議論しました。このとき、ニュートリノの質量階層性によって場合分けを行い、比較的重く観測可能性が最も高いニュートリノだけではなく、質量のないニュートリノの観測可能性、質量が縮退した二つのニュートリノを観測的に区別できる可能性まで、網羅的に議論を行いました。さらに、トリチウムから放出される電子のスペクトラムから CνB のスペクトラムを再構築する手法についても議論しました。これらの結果を用いて、将来ニュートリノを通じて、宇宙、特に初期宇宙の詳細な情報を観測によって得ることができると期待されます。
|
現在までの達成度 (段落) |
令和2年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
令和2年度が最終年度であるため、記入しない。
|