研究課題/領域番号 |
19J20605
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
審査区分 |
小区分32020:機能物性化学関連
|
研究機関 | 東京工業大学 |
研究代表者 |
原島 崇徳 東京工業大学, 理学院, 特別研究員(DC1)
|
研究期間 (年度) |
2019-04-25 – 2022-03-31
|
研究課題ステータス |
完了 (2021年度)
|
配分額 *注記 |
2,500千円 (直接経費: 2,500千円)
2021年度: 800千円 (直接経費: 800千円)
2020年度: 800千円 (直接経費: 800千円)
2019年度: 900千円 (直接経費: 900千円)
|
キーワード | DNA / 分子デバイス / 単分子 / ナノテクノロジー / πスタッキング / トランジスタ / 単一分子 / 走査型トンネル顕微鏡 / 分子探針 |
研究開始時の研究の概要 |
本研究では、単一分子スケールで三端子構造を実現できる3'-5'型DNA単分子接合に基づく単分子トランジスタの開発を目的とした。三端子構造を有する単分子デバイスは、二端子系では実現できない幅広い機能を有する単分子素子の開発を可能とする。電極に架橋させるDNAの構造設計により電極と独立な三端子目をDNA分子内に設置する。この三端子目を、光化学を用いて制御することによって、電界効果に基づく光ゲート機能を発現させる。本研究では、素子となるDNAの合成から、光ゲート機能の立証のための光学系の設計及び計測を行い、これまで実現不可能であった、トランジスタ機能を有する超微小分子デバイスを開発することを目指す。
|
研究実績の概要 |
本研究は、三端子構造を有する単分子接合を創成し、光応答性単一分子トランジスタを実現することを目的とする。単一分子トランジスタの基礎構造には、3',5'末端にチオール修飾を施し作製された三端子DNA単分子接合を活用した。最終年度となる本年度は、1、2年度に確立した三端子DNA単分子接合の伝導度計測を実施した。加えて、本研究にて開発した三端子構造に特有な自己修復特性が見出され、従来型の単分子素子に比べ機械的安定性が飛躍的に向上した。 本年度は、三端子DNA単分子接合の伝導特性の制御に着手した。具体的には、鎖長の異なる三端子DNAに対する電流-電圧計測を実施し、Simmonsモデルに基づく伝導軌道のエネルギーの評価を行った。伝導軌道のエネルギーはトランジスタとしてのDNAのゲート電圧を決定する重要な因子である。結果として、核酸塩基間のπスタッキングによる伝導軌道の非局在化により、軌道エネルギーは鎖長に対して減少し、長鎖DNAにおいて高い伝導度が実現することが明らかになった。従って、πスタック軌道によるエネルギー障壁を鎖長により調節可能であることが示された。 さらに、本研究にて開発した三端子DNA単分子接合は、既存の単分子接合とは異なり、高い機械的安定性を有することが明らかとなった。既存の単分子素子は数nmの揺らぎで破壊されてしまう点で耐久性に欠ける一方、本研究の三端子DNAトランジスタは30 nmの掃引試験にも耐久できる高安定性を示した。追加で実施された力計測や分子動力学計算によって、この特性はDNA塩基対の自己修復機構によるものであることが解明された。したがって、三端子DNA単分子接合の構造を基礎とすることにより、従来に比べ極めて高安定な単分子素子をトランジスタに限らず開発することが可能となった。
|
現在までの達成度 (段落) |
令和3年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
令和3年度が最終年度であるため、記入しない。
|