研究実績の概要 |
平面内の曲線に対し, 曲率の p 乗積分 (p は一般のパラメタ) で与えられる汎函数 `p-曲げエネルギー’ が定義される. 本年度はグラフ曲線に, 障害物を表す既知函数を下回らないという外的束縛が加えられた条件の下で p-曲げエネルギーを最小化せよという障害物問題を考察した. 障害物問題の解は, (i) Euler--Lagrange 方程式の特異性ないし退化性, (ii) 障害物の存在という正則性の損失が起こり得る二つの要因を抱えており, どちらが優位に働くかを調べることは Euler--Lagrange 方程式の非線形性や障害物の存在から一般に容易ではない. 本年度の研究において, 上記の二つの要因の内どちらが強く働くかはパラメタ p により変わることを示した. また, 応用として障害物問題の解の最適な正則性を得た. 特に, (i) が強く働く場合, 正則性の損失は変曲点という幾何的に意味をもつような点で起こる (また, 変曲点以外では正則性の損失が起きない) ことを示し, 問題の幾何構造と障害物の両者が共に特有の現象を引き起こすことを確認した. 研究成果は Dall’Acqua-Mueller-Okabe-Yoshizawa の論文として纏められ, 現在学術誌に投稿中である. また, 障害物による外的束縛条件を課さない平面曲線の中で p-曲げエネルギーの臨界点を考察し, 一般化楕円函数を用いた臨界点の完全分類, 及び最適な正則性を得た. 古典的, すなわち p が 2 の場合, 楕円函数による分類や正則性は臨界点の解析の上で非常に重要な役割を果たしてきたが, 本研究により古典的な分類を一般のパラメタ p への自然に拡張した結果を得たことになる. 研究成果は Miura-Yoshizawa の論文として纏められ, 現在学術誌に投稿中である.
|