研究課題/領域番号 |
19J30002
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
審査区分 |
小区分60040:計算機システム関連
|
研究機関 | 北海道大学 |
研究代表者 |
植吉 晃大 北海道大学, 大学院情報科学研究科, 特別研究員(DC2)
|
研究期間 (年度) |
2019-04-25 – 2021-03-31
|
研究課題ステータス |
完了 (2019年度)
|
配分額 *注記 |
2,300千円 (直接経費: 2,300千円)
2019年度: 1,200千円 (直接経費: 1,200千円)
|
キーワード | ハードウェアアーキテクチャ / 省電力化 / 機械学習 / ニューラルネットワーク |
研究開始時の研究の概要 |
深層学習は実用的な画像・音声認識において極めて高い性能を示し、世界的にニューラルネットの第三次ブームを引き起こしている。深層学習は予測・分類の非常に高い性能を示すが、計算量が膨大なため、実用的に応用・発展を遂げていくために、高効率(=電力/時間)なハードウェアシステムの構築が求められている。本研究では、ハードウェアに親和性を持たせたアルゴリズムを考案・評価し、シミュレーションレベルで精度誤差を1%未満で抑える低消費電力な計算器アーキテクチャを提案する。
|
研究実績の概要 |
深層学習は実用的な画像・音声認識において極めて高い性能を示し、世界的にニューラルネットの第三次ブームを引き起こしている。深層学習は予測・分類の非常に高い性能を示すが、計算量が膨大なため、実用的に応用・発展を遂げていくために、高効率(=電力/時間)なハードウェアシステムの構築が求められている。本研究では、ハードウェアに親和性を持たせたアルゴリズムを考案・評価し、シミュレーションレベルで精度誤差を1%未満で抑える低消費電力な計算機アーキテクチャを提案する。 平成31年度では、深層学習用ハードウェアアクセラレータチップの調査と実験を行った。計算回路規模を見積もり、その計算回数を減らすための新しい深層ニューラルネットワーク(DNN: Deep Neural Network)モデルを提案した。DNN計算は、DNNの最小演算単位であるシナプス計算を、並列に大量に行う。これらは、単純な積和演算の繰り返しであるため、これらの計算を少ないメモリアクセスで、他並列に行うことが、効率的なハードウェア設計の肝となる。しかし、これらは学習済みのモデルが定義されると、決められた仕様の下で、ハードウェア設計者が最適設計を行う必要があった。本研究では、モデル設計自体もハードウェア設計者が仕様を決められるような新しい機構を提案した。少ないオーバーヘッドの予測器を用いて、動的に本流のDNN計算をスキップする機構である。これは、計算規模と精度を、学習済みモデルに対して、後から調整することが可能となる。平成31年度では、これをベースとした、実回路上での回路規模・電力の評価を行った。
|
現在までの達成度 (段落) |
翌年度、交付申請を辞退するため、記入しない。
|
今後の研究の推進方策 |
翌年度、交付申請を辞退するため、記入しない。
|