• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

非等方性を持つ非線形偏微分方程式における界面ダイナミクスの解析

研究課題

研究課題/領域番号 19K03556
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分12020:数理解析学関連
研究機関岩手大学

研究代表者

奈良 光紀  岩手大学, 理工学部, 准教授 (90512161)

研究期間 (年度) 2019-04-01 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
4,550千円 (直接経費: 3,500千円、間接経費: 1,050千円)
2022年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2021年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2020年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2019年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
キーワード偏微分方程式 / 進行波 / 安定性 / 空間的非等方性 / 分岐問題 / 擬微分方程式 / Spreading front / 非等方性 / spreading front / 非等方的拡散 / 反応拡散方程式 / フランク図形
研究開始時の研究の概要

拡散の効果が非等方的な反応拡散型偏微分方程式およびこれに関連した擬微分方程式における界面ダイナミクスの解明に取り組む.特に,平面波(planar wave)と呼ばれる進行波解や空間遠方に広がってゆく界面(spreading front)の幾何学的形状と安定性の解析,時刻無限大での解の漸近挙動の解析に取り組み,拡散の非等方性が果たす役割の解明に挑む.本研究は,生理学における情報伝達機構の理論面からの解明を目標の一つとするものである.

研究実績の概要

2023年度の研究実績の概要は以下の通りである。

1)昨年度に引き続き、帯状領域におけるバイドメイン方程式の分岐問題について、数値計算で観測された不安定化現象を理論的な側面から考察した。その結果、当初計画していた研究成果を得るためには、分岐計算において技術的困難があることが確認された。特に、優臨界(super-critical)と劣臨界(sub-critical)の判断条件を明確にするのが難しく、この解決を模索した。これは明治大学の俣野博氏、University of Pennsylvaniaの森洋一朗氏との共同研究である。
2)線形バイドメイン方程式と線形熱方程式の定性的性質の違いについて考察した。熱方程式における熱核(heat kernel)に対応する、バイドメイン方程式の基本解は負の値を取る部分があり、また回転対称でない形状をしている。これが、バイドメイン型Allen-Cahn方程式で平面波の不安定性が生じる原因である。不安定化の後に形成される進行波の形状と、基本解の形状との関係について、理論的なつながりを考察した。これを理論的に解明するための定式化および解析手法について検討した。
3)空間的に非等方的な情報伝播を表現する数理モデルとして、ネットワーク(グラフ)上の反応拡散型方程式について調査を行った。近年、注目されているテーマであり、本研究との関連性・手法や結果の応用の可能性を検討した。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

当初、予定していたテーマについては複数の論文としてその内容をまとめ、学術雑誌に発表した。一方、分岐問題については技術的困難によりやや進捗が遅れている。

今後の研究の推進方策

引き続き、バイドメイン型Allen-Cahn方程式における分岐問題に理論的な側面から取り組む。また、線形バイドメイン方程式の基本解の形状について考察し、バイドメイン型Allen-Cahn方程式で生じる平面波の不安定化のメカニズムを更に深く考察する。

報告書

(5件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 2021 実施状況報告書
  • 2020 実施状況報告書
  • 2019 実施状況報告書
  • 研究成果

    (9件)

すべて 2023 2022 その他

すべて 国際共同研究 (5件) 雑誌論文 (4件) (うち国際共著 2件、 査読あり 4件)

  • [国際共同研究] University of Pennsylvania(米国)

    • 関連する報告書
      2023 実施状況報告書
  • [国際共同研究] University of Pennsylvania(米国)

    • 関連する報告書
      2022 実施状況報告書
  • [国際共同研究] University of Pennsylvania(米国)

    • 関連する報告書
      2021 実施状況報告書
  • [国際共同研究] University of Pennsylvania(米国)

    • 関連する報告書
      2020 実施状況報告書
  • [国際共同研究] ペンシルベニア大学(米国)

    • 関連する報告書
      2019 実施状況報告書
  • [雑誌論文] Stability of Front Solutions of the Bidomain Allen-Cahn Equation on an Infinite Strip2023

    • 著者名/発表者名
      Matano Hiroshi、Mori Yoichiro、Nara Mitsunori
    • 雑誌名

      SIAM Journal on Mathematical Analysis

      巻: 55 号: 3 ページ: 1545-1595

    • DOI

      10.1137/21m1418095

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Asymptotic behavior of spreading fronts in an anisotropic multi-stable equation on $ \mathit{\boldsymbol{\mathbb{R}^N}} $2022

    • 著者名/発表者名
      Matsuzawa Hiroshi、Nara Mitsunori
    • 雑誌名

      Discrete and Continuous Dynamical Systems

      巻: 42 号: 10 ページ: 4707-4707

    • DOI

      10.3934/dcds.2022069

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり
  • [雑誌論文] Large time behavior of the solutions with spreading fronts in the Allen-Cahn equations on $ \mathbb R^n $2022

    • 著者名/発表者名
      Nara Mitsunori
    • 雑誌名

      Communications on Pure and Applied Analysis

      巻: 21 号: 11 ページ: 3605-3605

    • DOI

      10.3934/cpaa.2022116

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり
  • [雑誌論文] Asymptotic Behavior of Fronts and Pulses of the Bidomain Model2022

    • 著者名/発表者名
      Matano Hiroshi、Mori Yoichiro、Nara Mitsunori、Sakakibara Koya
    • 雑誌名

      SIAM Journal on Applied Dynamical Systems

      巻: 21 号: 1 ページ: 616-649

    • DOI

      10.1137/21m1416904

    • 関連する報告書
      2021 実施状況報告書
    • 査読あり / 国際共著

URL: 

公開日: 2019-04-18   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi