• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

情報幾何構造の変形と平坦性に関する理論構築とその応用

研究課題

研究課題/領域番号 19K03633
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分12040:応用数学および統計数学関連
研究機関福井大学

研究代表者

小原 敦美  福井大学, 学術研究院工学系部門, 教授 (90221168)

研究期間 (年度) 2019-04-01 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
3,900千円 (直接経費: 3,000千円、間接経費: 900千円)
2022年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2021年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2020年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2019年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
キーワード情報幾何 / 統計多様体 / 共形平坦化 / 二重自己平行性 / ネットワーク非線形拡散 / 計多様体 / 二重自己平行 / 最適化計算 / 統計モデル
研究開始時の研究の概要

確率モデルの変形・一般化に関わる理論は,ロバスト統計・機械学習・統計物理などで急速に必要性を増しつつあるが,(情報)幾何学的な視点からの研究はまだ建設途上であり,大いに不足している.これに取り組むため,応募者は自分たちのこれまでの研究成果も勘案し,次の課題の解決を具体的な研究目的とする.
(A) 非標準的な情報幾何構造の平坦化手法(共形平坦化)の確立とその応用
(B) 双対的な平坦性を合わせもつ(二重自己平行な)確率モデルの特徴づけとその応用

研究実績の概要

情報幾何学では,リーマン計量について互いに双対的なアファイン接続のペアが様々な重要な働きを見せる.従ってこの二つの互いに双対なアファイン接続に関して自己平行な部分多様体(以後,二重自己平行部分多様体と記す)も考えることができ,実際に数理科学の随所にしばしば現れるが,ほとんど研究されていない.
様々な数理科学に現れて重要な働きをする正定値対称行列錐や二次錐などの性質を抽出してものに対称錐と呼ばれるものがある.各種の対称錐の代数的な面を統一的に記述するものとして,Jordan代数と呼ばれるものがある.今年度は対称錐の二重自己平行部分多様体をJordan代数を用いて特徴付けに加えて,統計的推論,最適化などのデータサイエンスに対称錐が関わる問題のいくつかへの応用をまとめた論文を出版した(発表文献参照).
この成果の実応用として,衛星観測から得られるような地域毎の相関を有する大規模気象データからの共分散行列の最尤推定への応用を共同研究者らと実施中である.
これらの打ち合わせのために出張に加えて,研究成果紹介のため2件の国内研究会に参加した.また,二重自己平行性の性質のさらなる応用や,他の統計多様体への拡張などに関し,引き続き研究とアイデアの創発に努めるとともに,関連する資料収集,情報交換を行った.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

ネットワーク非線形拡散に関して,リアプノフ関数と情報幾何の概念が結びつく端緒が得られたので,この方向を発展させていけそうであるから.

今後の研究の推進方策

二重自己平行部分多様体の拡張,応用についてはいくつかの方向が見えているので,研究をあるので,研究を深めてゆく.
ネットワーク非線形拡散におけるエントロピーの振る舞いに関する幾何学的アプローチについても,上述したように糸口を見いだしたので,これをもう少し整備し論文にまとめることで,ネットワーク拡散現象の振る舞い,特に安定性解析に関して研究を前進させる.
これらに関連する資料収集,情報交換を積極的に行ってゆく.

報告書

(5件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 2021 実施状況報告書
  • 2020 実施状況報告書
  • 2019 実施状況報告書
  • 研究成果

    (7件)

すべて 2023 2021 2020 2019

すべて 雑誌論文 (6件) (うち査読あり 5件、 オープンアクセス 2件) 学会発表 (1件) (うち国際学会 1件)

  • [雑誌論文] Doubly autoparallel structure and curvature integrals: Applications to iteration complexity for solving convex programs2023

    • 著者名/発表者名
      Atsumi Ohara,Hideyuki Ishi and Takashi Tsuchiya
    • 雑誌名

      Information Geometry

      巻: 7 号: S1 ページ: 555-586

    • DOI

      10.1007/s41884-023-00116-x

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Static Output-Feedback Controller Synthesis for Linear MIMO Positive Delay Systems2021

    • 著者名/発表者名
      Xiaoyan Zhang and Atsumi Ohara
    • 雑誌名

      IEEJ Transactions on Electronics, Information and Systems

      巻: 141 ページ: 732-739

    • NAID

      130008046730

    • 関連する報告書
      2021 実施状況報告書
    • 査読あり
  • [雑誌論文] Properties of Nonlinear Diffusion Equations on Networks and Their Geometric Aspects2021

    • 著者名/発表者名
      Atsumi Ohara and Xiaoyan Zhang
    • 雑誌名

      Proceeding of Geometric Sciences 2021 (Frank Nielsen and Frederic Barbaresco eds.) Springer Lecture Notes in Computer Science

      巻: 12829 ページ: 736-743

    • DOI

      10.1007/978-3-030-80209-7_79

    • ISBN
      9783030802080, 9783030802097
    • 関連する報告書
      2021 実施状況報告書
    • 査読あり
  • [雑誌論文] 安定マッチングとそのいくつかの拡張問題の混合整数計画による定化について2021

    • 著者名/発表者名
      鈴川 欣秀,小原 敦美
    • 雑誌名

      福井大学 学術研究院工学系部門 研究報告

      巻: 70 ページ: 15-22

    • 関連する報告書
      2021 実施状況報告書
    • オープンアクセス
  • [雑誌論文] Behaviors of solutions to network diffusion equation with power-nonlinearity A role of the q-exponential function for sufficiently large power-exponent2020

    • 著者名/発表者名
      Xiaoyan Zhang, Taiga Senyo, Hiroto Sakai, and Atsumi Ohara
    • 雑誌名

      Eur. Phys. J. Special Topics

      巻: 229 号: 5 ページ: 729-741

    • DOI

      10.1140/epjst/e2020-900202-5

    • 関連する報告書
      2019 実施状況報告書
    • 査読あり
  • [雑誌論文] Doubly Autoparallel Structure on Positive Definite Matrices and Its Applications2019

    • 著者名/発表者名
      Atsumi Ohara
    • 雑誌名

      F. Nielsen and F. Barbaresco (Eds.): GSI 2019, Springer Lec. Notes in Comp. Science

      巻: 11712 ページ: 251-260

    • DOI

      10.1007/978-3-030-26980-7_26

    • ISBN
      9783030269791, 9783030269807
    • 関連する報告書
      2019 実施状況報告書
    • 査読あり
  • [学会発表] Study for a certain nonlinear diffusion equation on finite networks2019

    • 著者名/発表者名
      Atsumi Ohara
    • 学会等名
      Erice school of complexity XVI course
    • 関連する報告書
      2019 実施状況報告書
    • 国際学会

URL: 

公開日: 2019-04-18   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi