研究課題/領域番号 |
19K11861
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分60030:統計科学関連
|
研究機関 | 長崎大学 |
研究代表者 |
西井 龍映 長崎大学, 情報データ科学部, 教授 (40127684)
|
研究分担者 |
田中 章司郎 広島経済大学, メディアビジネス学部, 教授 (00197427)
持田 恵一 国立研究開発法人理化学研究所, 環境資源科学研究センター, チームリーダー (90387960)
|
研究期間 (年度) |
2019-04-01 – 2022-03-31
|
研究課題ステータス |
完了 (2021年度)
|
配分額 *注記 |
4,290千円 (直接経費: 3,300千円、間接経費: 990千円)
2021年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2020年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2019年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
|
キーワード | 時空間データ解析 / スパースモデリング / ネットワーク推定 / 深層学習 / 非対称損失 / 精密農業 / カラーマッチング / 分子ネットワーク / 時空間モデリング / カーネル推定 / コンピュータービジョン / 植物表現型分析 / 時空間回帰分析 / スパース回帰分析 / パターン認識 / ADMM / 疎推定 / SVR / 時空間回帰モデル / 遺伝子間ネットワーク |
研究開始時の研究の概要 |
環境・社会から得られる時間的および空間的に依存するビッグデータを数理的に記述するとき、なるべく簡単なモデル(疎なモデル)で記述したい。ここでは疎なモデルを逐次的に推定する手法を研究し、それを時空間データに適応して知を発見する。研究期間中、次の課題を中心に研究する。[a] 新たな疎推定の手法を提案する。[b] 植物の成長に関わるゲノム要因や環境要因を抽出する。[c] 空間的な経済時系列から、空間依存性や経済成長にかかわる因子を抽出する。
|
研究成果の概要 |
本研究の目的は時空間実データに対して統計モデルを開発・評価し,当該現象の特徴を把握することである.3年間の研究期間では種々の実データについての統計モデリングを行った.以下は論文として発表した主な研究成果である. 1) 色認識空間における楕円の推定論文, 2) 植物表現型推定におけるコンピュータビジョンのレビュー論文,3) スパース回帰分析と回帰分析(単行本),4) 時空間データの回帰分析における効率的変数選択法,5) 高解像度のハイパースペクトル画像にもとづく教師なし土地利用被覆推定,6) 植物の表現型に関する遺伝子や環境要因の特定,7) 太陽風が地震の引き金の一つであることの実証分析.
|
研究成果の学術的意義や社会的意義 |
太陽風が地震に影響しているという仮説を,地震頻度や太陽風に関する9次元の物理計測値から検証し,マグニチュード6より小さい地震頻度に影響することを示した.このように異質なビッグデータを考察することで,新しい知見が得られることの好例である.またオオムギの収穫量等の表現形を,遺伝子タイプや生育方法のうち重要な変数を選んでモデル化することにより,穀物の増産や炭素固定に貢献できる.さらに電力売買において,明日の電力使用が不足せず,かつコストの意味で効率な予測方法を研究した.
|