研究課題/領域番号 |
19K20223
|
研究種目 |
若手研究
|
配分区分 | 基金 |
審査区分 |
小区分60030:統計科学関連
|
研究機関 | 鳥取大学 |
研究代表者 |
森山 卓 鳥取大学, 工学研究科, 助教 (30823190)
|
研究期間 (年度) |
2019-04-01 – 2023-03-31
|
研究課題ステータス |
完了 (2022年度)
|
配分額 *注記 |
3,510千円 (直接経費: 2,700千円、間接経費: 810千円)
2022年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2021年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2020年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2019年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
|
キーワード | 極値理論 / セミパラメトリック推測 / ノンパラメトリック推測 / 確率分布推定 / 標本最大値 / 極値統計学 / 極値統計 / カーネル型推定 / セミパラメトリック推定 / 漸近理論 / ノンパラメトリック推定 / 順序統計量 |
研究開始時の研究の概要 |
現代社会の多様な場面において,巨大リスクに関わる標本最大値の確率分布推定の重要性が高まっている.パラメトリックモデルとして典型的な一般極値分布へのフィッティングやナイーブなノンパラメトリック分布推定には,その精度に理論上課題が残る.本研究では極値理論及びノンパラメトリックな推定方法の特長を併せ持つ最大値分布の推定方法を開発する.得られた手法が多くの場合に従来手法の推定精度を上回ることを示しつつ,各分野への応用を図る.
|
研究成果の概要 |
標本最大値の確率分布推定を考える本研究では,はじめに,極値理論に基づく近似的な推定量と,異なるアプローチとしてのノンパラメトリックな推定量の精度について精度を調査した.推定精度は母集団分布の裾指数に大きく依存し,裾指数が0に近い場合にはノンパラメトリックな推定量が理論的にも数値的にも精度が上回るものの,0から大きく離れるとその精度を大きく落とすことがわかった.このように推定精度が大きく異なることが確認された2つのアプローチについて,両者をうまく組み合わせるセミパラメトリックなアプローチを構築し,その数値的な性質を確認した.
|
研究成果の学術的意義や社会的意義 |
標本最大値は巨大リスクを考える際の1つの指標であり,これを正確に評価することは個々の問題の正確なリスクの把握を通じて,持続可能な社会を構築するのに不可欠である.本研究では,標本最大値の確率分布推定に対して,新たな高精度推定方法を確立した.ニューラルネットワークなどの活躍が目覚ましいなか,単純なノンパラメトリックモデルがうまく行かず,セミパラメトリックのような新たなアプローチの必要性を示すことができた点は統計学分野において学術的な意義がある.
|