• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

深層学習に基づくイネバイオマスの汎用的推定モデル構築とその応用

研究課題

研究課題/領域番号 20H02968
研究種目

基盤研究(B)

配分区分補助金
応募区分一般
審査区分 小区分39020:作物生産科学関連
研究機関京都大学

研究代表者

田中 佑  京都大学, 農学研究科, 助教 (50634474)

研究分担者 桂 圭佑  東京農工大学, (連合)農学研究科(研究院), 准教授 (20432338)
辻本 泰弘  国立研究開発法人国際農林水産業研究センター, 生産環境・畜産領域, プロジェクトリーダー (20588511)
高井 俊之  国立研究開発法人国際農林水産業研究センター, 生産環境・畜産領域, 主任研究員 (40547725)
研究期間 (年度) 2020-04-01 – 2023-03-31
研究課題ステータス 完了 (2022年度)
配分額 *注記
17,550千円 (直接経費: 13,500千円、間接経費: 4,050千円)
2022年度: 3,900千円 (直接経費: 3,000千円、間接経費: 900千円)
2021年度: 5,720千円 (直接経費: 4,400千円、間接経費: 1,320千円)
2020年度: 7,930千円 (直接経費: 6,100千円、間接経費: 1,830千円)
キーワードイネ / 深層学習 / バイオマス / 可視画像 / 地上部バイオマス / 画像解析 / バイオマス推定
研究開始時の研究の概要

本研究は,イネの生育を示す最も基本的な情報である地上部のバイオマスを,非破壊かつ簡便に推定する技術を確立し,その生産現場への応用可能性を検証することを目的とする.
現時点では,多様な栽培環境においてイネのバイオマスを非破壊かつ簡便に推定する方法が存在していない.本研究では,近年著しく進歩しつつある機械学習の一手法である深層学習に着目した.深層学習を応用することで,一般的なデジタルカメラから撮影されたイネの画像からバイオマスを推定する技術の確立を試みる.さらにそれをwebアプリケーションとして実装し,海外を含めた農業生産現場での応用可能性を検証する.

研究成果の概要

作物の生育を正確に把握することは,生産現場における栽培管理や,育種現場における高生産性系統の選抜など,多様な場面で必須である.本研究では重要作物であるイネを対象とし,深層学習を活用することで,可視画像のみから簡便かつ正確にバイオマスを推定するモデルの開発を目指した.多地点で栽培された多様なイネ群落の画像と対応するバイオマスの実測値から深層学習モデルを構築した.得られたモデルは,未知の地点で栽培されたイネ品種に対しても充分な精度でバイオマスを推定できることが示され,省力的かつ非破壊でのバイオマス推定技術を構築することができた.

研究成果の学術的意義や社会的意義

作物の安定多収化を実現するためには,作物のバイオマスを正確かつ簡便に把握することが極めて重要である.本研究で得られた技術は,市販のデジタルカメラやスマートフォンを利用することで,イネの生育量を即座に推定できることを示している.生産現場において,本技術を活用することで,イネの適切な施肥管理や圃場管理が容易になると期待される.さらに世界的には,イネのさらなる多収化が重要な課題であり,育種現場において,大量の遺伝資源から有望系統を選抜するうえでも有効なツールになると考えられる.

報告書

(4件)
  • 2022 実績報告書   研究成果報告書 ( PDF )
  • 2021 実績報告書
  • 2020 実績報告書
  • 研究成果

    (6件)

すべて 2023 2022 2021 2020

すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (5件) (うち国際学会 1件)

  • [雑誌論文] Biomass estimation of World Rice (Oryza sativa L.) Core Collection based on the convolutional neural network and digital images of canopy2023

    • 著者名/発表者名
      Kota Nakajima, Yu Tanaka, Keisuke Katsura, Tomoaki Yamaguchi, Tatsuhiko Shiraiwa
    • 雑誌名

      Plant Production Science

      巻: in press 号: 2 ページ: 187-196

    • DOI

      10.1080/1343943x.2023.2210767

    • 関連する報告書
      2022 実績報告書
    • 査読あり
  • [学会発表] 深層学習を用いたイネバイオマス推定モデルの構築および撮影時刻と欠株に対する頑健性2022

    • 著者名/発表者名
      中嶌 洸太, 田中 佑, 桂 圭佑, 山口 友亮, 齋藤 和樹, 辻本 泰弘, 渡邊 智也, 白岩 立彦
    • 学会等名
      第254回日本作物学会
    • 関連する報告書
      2022 実績報告書
  • [学会発表] バイオマス蓄積データに基づく簡便なイネ収穫時バイオマス予測手法の開発2022

    • 著者名/発表者名
      竹内 瑛祐, 田中 佑, 吉田 ひろえ, 齋藤 和樹, 桂 圭佑, 白岩 立彦
    • 学会等名
      第254回日本作物学会
    • 関連する報告書
      2022 実績報告書
  • [学会発表] ニューラルネットワークに基づくイネ群落葉気温差の予測とその環境応答の評価2022

    • 著者名/発表者名
      近藤 琳太郎, 田中 佑, 白岩 立彦
    • 学会等名
      第253回日本作物学会
    • 関連する報告書
      2021 実績報告書
  • [学会発表] Deep Learning-Based Robust Estimation for Rice Biomass Using Digital Image of Canopy2021

    • 著者名/発表者名
      Kota Nakajima, Yu Tanaka, Keisuke Katsura, Tatsuhiko Shiraiwa
    • 学会等名
      第10回アジア作物学会
    • 関連する報告書
      2021 実績報告書
    • 国際学会
  • [学会発表] 多様な草型を有するイネ品種群を対象とした深層学習モデルによるバイオマス推定2020

    • 著者名/発表者名
      中嶌 洸太, 田中 佑, 桂 圭佑, 山口 友亮, 白岩 立彦
    • 学会等名
      日本作物学会第251回講演会
    • 関連する報告書
      2020 実績報告書

URL: 

公開日: 2020-04-28   更新日: 2024-01-30  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi