研究課題/領域番号 |
20J00186
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
審査区分 |
小区分11010:代数学関連
|
研究機関 | 筑波大学 |
研究代表者 |
金久保 有輝 筑波大学, 数理物質系, 特別研究員(PD)
|
研究期間 (年度) |
2020-04-24 – 2023-03-31
|
研究課題ステータス |
完了 (2022年度)
|
配分額 *注記 |
4,810千円 (直接経費: 3,700千円、間接経費: 1,110千円)
2022年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2021年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2020年度: 1,690千円 (直接経費: 1,300千円、間接経費: 390千円)
|
キーワード | アファイン量子群 / 多面体表示 / decoration |
研究開始時の研究の概要 |
結晶基底は、純数学の分野のみならず、統計物理や離散的計算モデルなど、幅広い分野で応用されている研究対象である。結晶基底は様々な表され方をするが、本研究では、結晶基底を空間上の整数点で表す「多面体表示」の性質を多く解明したいと考えている。Verma加群、既約加群という重要な加群に対する結晶基底が主に研究されるが、本研究では、それらの多面体表示の具体的な形を明らかにする。その応用として、クラスター理論で盛んに研究されている「potential」という関数を、結晶基底の立場から理解することも目標にしている。
|
研究実績の概要 |
本年度は、これまで扱った以外の古典的アファイン型リー環に対するVerma加群の結晶基底の多面体表示について、その組み合わせ論的対象による記述を研究した。具体的には、higher level Young wallという既存の組み合わせ論的対象を使った、多面体表示の具体形の記述を研究した。その結果、具体形の記述に関する予想を立てることができた。また、これまでの研究で、いくつかの古典的アファイン型リー環に対する既約加群の結晶基底の多面体表示の組み合わせ論的記述に関して、予想を立てることができていた。本年度の研究で、予想の解決を行うことができた。結果を論文にまとめ、論文誌に投稿した。本研究課題については、研究集会「物理的な代数と組合せ数学セミナー」で研究発表を行った。
既約加群を一般化したextremal weight加群の結晶基底についても、その多面体表示を研究した。具体的には、多面体表示の具体形に関する特徴付けを行った。本研究課題については、受入研究者である佐垣氏と共同研究を行った。いくつかの古典的アファイン型リー環とweightに対する結晶基底の多面体表示について、その具体形を求めることができた。
また、Koshevoy氏、中島氏と共同研究を行い、古典型リー群上のdecorationを明示的に求めるアルゴリズムを構築することができた。結果を論文にまとめ、現在論文誌に投稿中である。本研究課題については、研究集会「Algebraic Lie Theory and Representation Theory (ALTReT) 」で研究発表を行った。
|
現在までの達成度 (段落) |
令和4年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
令和4年度が最終年度であるため、記入しない。
|