研究課題/領域番号 |
20J10058
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
審査区分 |
小区分12040:応用数学および統計数学関連
|
研究機関 | 大阪大学 |
研究代表者 |
仲北 祥悟 大阪大学, 基礎工学研究科, 特別研究員(DC2)
|
研究期間 (年度) |
2020-04-24 – 2022-03-31
|
研究課題ステータス |
採択後辞退 (2021年度)
|
配分額 *注記 |
1,700千円 (直接経費: 1,700千円)
2021年度: 800千円 (直接経費: 800千円)
2020年度: 900千円 (直接経費: 900千円)
|
キーワード | 確率過程の統計学 / 確率微分方程式 / 拡散過程 / 統計的漸近理論 |
研究開始時の研究の概要 |
本研究では、現象を観測するにあたって生じる様々なノイズの影響を取り除き、確率微分方程式と呼ばれる数理モデルのパラメータに対して、最大限情報を活用した良い推定量を構成すること、及び確率微分方程式を用いて自然や社会における現象に対するモデリングを統計的手法を用いて行う。これを通じて、将来的には様々な現象に確率微分方程式を当てはめることで数理科学における新たな課題を発掘することができると期待される。
|
研究実績の概要 |
研究計画において、令和2年度は(i)現象モデルとしての確率微分方程式の解である拡散過程が離散時間上で加法的ノイズの影響下で観測される時のノイズの分散パラメータ、確率微分方程式の拡散係数のパラメータ、及びドリフト係数のパラメータについての局所漸近正規性、(ii)拡散過程が離散時間上で時間積分によって平滑化され観測された場合の推定量・検定統計量の考案並びにその漸近的挙動、の2点について調べるものとした。 (i)の局所漸近正規性について、最もシンプルなモデルとして、1次元定常Ornstein-Uhlenbeck過程に平均0かつ正の分散を持つ正規分布に独立同分布で従うノイズが加法的かつ拡散過程とは独立に離散時間上での観測に加わるという設定の下で証明を試みたが、結果として完成には至らなかった。この単純な設定にあっても局所漸近正規性の証明においても特に分散共分散行列について複雑な計算を要し、証明は完了しなかった。最もシンプルなモデルを考えその収束レートや収束先の分布について見通しを良くするというアイデアが機能しなかったため一般の状況についての証明もまた困難が予想される。 (ii)の時間積分観測下での推定量・検定統計量の考案と漸近的挙動については以下の成果が得られた。まず離散時間上での時間積分された観測の下で、潜在過程である拡散過程を解に持つ確率微分方程式の拡散係数並びにドリフト係数のパラメータに対する一致推定量を構成した。また推定量に加えて、観測が実際に時間積分されているかどうかを検定するための統計量を構成し、時間積分されていないとする帰無仮説の下での漸近正規性、及び正の時間幅で積分されているとする対立仮説の下での発散を証明した。この統計量を用いることで一致性のある漸近的検定が可能となっており、実際にある脳波データについては非常に低い有意水準であっても対立仮説を採択する結果を得た。
|
現在までの達成度 (段落) |
翌年度、交付申請を辞退するため、記入しない。
|
今後の研究の推進方策 |
翌年度、交付申請を辞退するため、記入しない。
|