研究課題/領域番号 |
20J10379
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
審査区分 |
小区分12020:数理解析学関連
|
研究機関 | 東京大学 |
研究代表者 |
立石 優二郎 東京大学, 大学院数理科学研究科, 特別研究員(DC2)
|
研究期間 (年度) |
2020-04-24 – 2022-03-31
|
研究課題ステータス |
完了 (2021年度)
|
配分額 *注記 |
1,700千円 (直接経費: 1,700千円)
2021年度: 800千円 (直接経費: 800千円)
2020年度: 900千円 (直接経費: 900千円)
|
キーワード | 放物型偏微分方程式 / 漸近挙動解析 / シュレーディンガー熱半群 |
研究開始時の研究の概要 |
本研究では特異・退化な係数関数を持つ放物型偏微分方程式に対して,時間無限大での解の形状解析を行う.また解の正則性や減衰評価,熱核評価といった定性的解析は解の形状を知るための基本的な情報であるため,本研究では種々の関数不等式を用いて,定性的解析が可能な係数関数のクラスの拡張を検討する.漸近挙動解析では解の高階導関数の漸近形を調べることにより解の最大点の挙動を明らかにする.また最大点挙動の結果の応用として負の曲率を持つ多様体上の熱方程式の形状解析を検討する.
|
研究実績の概要 |
本研究では特異性あるいは退化性のある重み関数を係数にもつ放物型偏微分方程式に対して,解の時刻無限大での漸近挙動を考察した.またそれに伴い,解の正則性等の定性的解析やHarnack不等式や熱核評価等の定量的解析を導出することを目的とした.加えて,重み付き熱方程式はポテンシャル項を持つ熱方程式の変換によっても得られるため,シュレーディンガー熱半群に対する解析も考察している. 本年度の研究実施計画では,一般の重み関数に対して放物型偏微分方程式の漸近挙動解析を行うこと及び前年度からの計画修正として重み付きソボレフ空間のコンパクト埋め込みに関する先行研究の整理と拡張検討を予定していた.結果,本研究で扱う予定であった重み関数のクラスでの重み付きソボレフ空間のコンパクト埋め込みの結果は十分に得られておらず,現時点では多項式冪の重み関数の場合のみ漸近挙動を導出できている.一方でポテンシャル項を持つ熱方程式の解評価は結果を得られた.具体的には,逆二次ポテンシャルを持つシュレーディンガー熱半群に対して導関数のローレンツ空間での最適減衰評価を導出し,対応するシュレーディンガー作用素の調和関数の挙動を用いて特徴付けを行った.これは先行研究の拡張であるとともに,シュレーディンガー熱半群及びその導関数の挙動がシュレーディンガー作用素の正値調和関数のみならず他の調和関数の挙動によって決定される様子を表した結果となっている.
|
現在までの達成度 (段落) |
令和3年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
令和3年度が最終年度であるため、記入しない。
|