• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

二次元の半単純フロベニウス多様体の周期写像

研究課題

研究課題/領域番号 20J20053
研究種目

特別研究員奨励費

配分区分補助金
応募区分国内
審査区分 小区分11020:幾何学関連
研究機関東京大学

研究代表者

ZHA Chenghan  東京大学, 数理科学研究科, 特別研究員(DC1)

研究期間 (年度) 2020-04-24 – 2023-03-31
研究課題ステータス 完了 (2022年度)
配分額 *注記
2,500千円 (直接経費: 2,500千円)
2022年度: 800千円 (直接経費: 800千円)
2021年度: 800千円 (直接経費: 800千円)
2020年度: 900千円 (直接経費: 900千円)
キーワードmirror symmetry / period map / chain type polynomials / Seifert form / equivariant K-theory / singularity theory / invertible polynomial / relative K-theory / matrix factorizations / integrable hierarchies / topological K-theory / simple singularities
研究開始時の研究の概要

The notion of a Frobenius manifold is very special. It is a source of special functions that have many interesting applications. The work of Costello and Li provides a construction of a Frobenius manifold using harmonic analysis on a CY manifold. My goal is to extend their construction to singularity theory, because it could improve our understanding of the Frobenius structures in singularity theory as well as their applications to the representation theory of vertex algebras and integrable systems. And I will also study generalized periods and mirror symmetry using deformation theory.

研究実績の概要

Recall that in 2020, we computed the image of the Milnor lattice of an ADE singularity under a period map. Otani-Takahashi generalized the result to the case of invertible polynomials of chain type but in a different method. Using the basis of Milnor lattice of chain type invertible polynomials that was found by Otani-Takahashi, we calculated the image of the Milnor lattice of chain type invertible polynomials from the other side of the mirror following our original method.

As an application, an important topological invariant of the basis called Seifert form, which is related to a more well-known topological invariant called intersection form, was calculated following a significant formula by Hertling connecting Seifert form and somewhat analytical result here.

As I mentioned our goal is to compute the image of the Milnor lattice via the period map. The main feature of our answer is that it involves various gamma-constants and roots of unity. The second goal of our paper was to show that although the formulas look cumbersome, in fact there is an interesting structure behind them. We expected that our answer can be stated quite elegantly via relative K-theory as what we did for ADE singularity. However, as for the general chain type invertible polynomials, equivariant relative topological K-theory interpretation is far more difficult.

現在までの達成度 (段落)

令和4年度が最終年度であるため、記入しない。

今後の研究の推進方策

令和4年度が最終年度であるため、記入しない。

報告書

(3件)
  • 2022 実績報告書
  • 2021 実績報告書
  • 2020 実績報告書
  • 研究成果

    (1件)

すべて 2020

すべて 雑誌論文 (1件) (うち査読あり 1件、 オープンアクセス 1件)

  • [雑誌論文] Integral structure for simple singularities2020

    • 著者名/発表者名
      Todor Milanov and Chenghan Zha
    • 雑誌名

      SIGMA

      巻: 16

    • DOI

      10.3842/sigma.2020.081

    • 関連する報告書
      2020 実績報告書
    • 査読あり / オープンアクセス

URL: 

公開日: 2020-07-07   更新日: 2024-03-26  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi