• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

位相変調に関する聴覚特性に基づいた音響情報ハイディング

研究課題

研究課題/領域番号 20J20580
研究種目

特別研究員奨励費

配分区分補助金
応募区分国内
審査区分 小区分61010:知覚情報処理関連
研究機関北陸先端科学技術大学院大学

研究代表者

MAWALIM CANDY OLIVIA  北陸先端科学技術大学院大学, 先端科学技術研究科, 特別研究員(DC1)

研究期間 (年度) 2020-04-24 – 2023-03-31
研究課題ステータス 交付 (2021年度)
配分額 *注記
2,500千円 (直接経費: 2,500千円)
2021年度: 800千円 (直接経費: 800千円)
2020年度: 900千円 (直接経費: 900千円)
キーワードinformation hiding / voice privacy / speaker anonymization / watermarking / authentication / speech coding
研究開始時の研究の概要

To achieve research goal, the following major steps will be conducted:
First step is to design embedding system for audio information hiding with consideration of psychoacoustics and phase modulation concepts. Second step is to determine the way for detecting the embedded information. At this step also, the medium of audio information hiding will be considered such as VoIP or mobile communication. Lastly, the thorough evaluation will be conducted so that the proposed system satisfies all the requirements and can be applied in speech communication (e.g. as tampering or spoofing detection).

研究実績の概要

The major milestone in FY2021 is developing a framework to improve the security of speaker anonymization. Speaker anonymization aims to address the voice privacy issue by suppressing the original speaker's personally identified information (PII). The output anonymized speech should be able to authenticate by the authorized parties. However, since the mapping between speaker and pseudo-speaker is not necessarily one-to-one correspondence, recognizing genuine anonymized speech is difficult. To deal with this issue, the proposed framework integrates the information hiding approach to simultaneously secure PII and verify the content via an embedded watermark. The related publications consist of one international conference and two journals.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The progress of this study is going well as planned. At this stage, the proposed framework has been developed by integrating the information hiding approach to protecting content and securing speaker individuality information. It consists of an encoder and a decoder. The encoder aims to protect the speaker's identity by using an anonymization approach while embedding a parameter that represents a watermark. The decoder seeks to protect the authentication of the speech by accurately detecting the embedded watermarks. An extensive evaluation has been conducted to validate the proposed framework's performance compared to the existing methods. The results of this study in FY2021 were reported in APSIPA Proceeding 2021, MDPI Entropy Journal 2021, and Computer Speech and Language Journal 2022.

今後の研究の推進方策

In future work, the remaining issues, especially those related to subjective and objective evaluations for intelligibility and naturalness requirements, will be addressed. The results obtained by using existing objective evaluations could give general information about a speaker anonymization method, but it is still inadequate to show the significance of each method. Besides, x-vector-based information hiding and the investigation of other prospective speech features will be considered. By controlling the less significant eigenstructure of the x-vector, we expect better protection for speech signals. Finally, the workflow for the real application will be investigated for speech tampering and spoofing countermeasure.

報告書

(2件)
  • 2021 実績報告書
  • 2020 実績報告書
  • 研究成果

    (8件)

すべて 2022 2021 2020

すべて 雑誌論文 (4件) (うち国際共著 4件、 査読あり 4件、 オープンアクセス 3件) 学会発表 (4件) (うち国際学会 3件)

  • [雑誌論文] Speaker anonymization by modifying fundamental frequency and x-vector singular value2022

    • 著者名/発表者名
      Mawalim Candy Olivia、Galajit Kasorn、Karnjana Jessada、Kidani Shunsuke、Unoki Masashi
    • 雑誌名

      Computer Speech & Language

      巻: 73 ページ: 101326-101326

    • DOI

      10.1016/j.csl.2021.101326

    • 関連する報告書
      2021 実績報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Speech Watermarking Method Using McAdams Coefficient Based on Random Forest Learning2021

    • 著者名/発表者名
      Mawalim Candy Olivia、Unoki Masashi
    • 雑誌名

      Entropy

      巻: 23 号: 10 ページ: 1246-1246

    • DOI

      10.3390/e23101246

    • 関連する報告書
      2021 実績報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] X-Vector Singular Value Modification and Statistical-Based Decomposition with Ensemble Regression Modeling for Speaker Anonymization System2020

    • 著者名/発表者名
      Mawalim Candy Olivia、Galajit Kasorn、Karnjana Jessada、Unoki Masashi
    • 雑誌名

      Proc. Interspeech 2020

      巻: - ページ: 1703-1707

    • DOI

      10.21437/interspeech.2020-1887

    • 関連する報告書
      2020 実績報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Speech Information Hiding by Modification of LSF Quantization Index in CELP Codec2020

    • 著者名/発表者名
      Candy Olivia Mawalim, Shengbei Wang, Masashi Unoki
    • 雑誌名

      Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, {APSIPA} 2020, Auckland, New Zealand, December 7-10, 2020

      巻: - ページ: 1321-1330

    • 関連する報告書
      2020 実績報告書
    • 査読あり / 国際共著
  • [学会発表] Improving Security in McAdams Coefficient-Based Speaker Anonymization by Watermarking Method2021

    • 著者名/発表者名
      Candy Olivia Mawalim, Masashi Unoki
    • 学会等名
      APSIPA2021
    • 関連する報告書
      2021 実績報告書
    • 国際学会
  • [学会発表] X-vector anonymization using regression modeling with statistical and singular value decomposition2021

    • 著者名/発表者名
      Candy Olivia Mawalim, Kasorn Galajit, Jessada Karnjana, Masashi Unoki
    • 学会等名
      電子情報通信学会EMM研究会
    • 関連する報告書
      2020 実績報告書
  • [学会発表] X-Vector Singular Value Modification and Statistical-Based Decomposition with Ensemble Regression Modeling for Speaker Anonymization System2020

    • 著者名/発表者名
      Candy Olivia Mawalim, Kasorn Galajit, Jessada Karnjana, Masashi Unoki
    • 学会等名
      Interspeech2020
    • 関連する報告書
      2020 実績報告書
    • 国際学会
  • [学会発表] Speech Information Hiding by Modification of LSF Quantization Index in CELP Codec2020

    • 著者名/発表者名
      Candy Olivia Mawalim, Shengbei Wang, Masashi Unoki
    • 学会等名
      APSIPA2020
    • 関連する報告書
      2020 実績報告書
    • 国際学会

URL: 

公開日: 2020-07-07   更新日: 2024-03-26  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi