研究課題/領域番号 |
20J21966
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
審査区分 |
小区分15010:素粒子、原子核、宇宙線および宇宙物理に関連する理論
|
研究機関 | 東京大学 |
研究代表者 |
渡邊 彬生 東京大学, 理学系研究科, 特別研究員(DC1)
|
研究期間 (年度) |
2020-04-24 – 2023-03-31
|
研究課題ステータス |
完了 (2022年度)
|
配分額 *注記 |
3,100千円 (直接経費: 3,100千円)
2022年度: 1,000千円 (直接経費: 1,000千円)
2021年度: 1,000千円 (直接経費: 1,000千円)
2020年度: 1,100千円 (直接経費: 1,100千円)
|
キーワード | 共形場理論 / 超対称ゲージ理論 / W代数 / 量子変形 / 量子トロイダル代数 / 三浦変換 |
研究開始時の研究の概要 |
近年4次元超対称ゲージ理論と2次元共形場理論の関連が注目されているが、超対称ゲージ理論も共形場理論もより一般的な枠組みが知られている。本研究では弦理論の高次元構造であるブレーンを組み合わせて代数を構成し、代数の量子変形という数学的手法で様々な空間上の超対称ゲージ理論と共形場理論の関連を明らかにする。 ブレーンの組み合わせから構成される代数(SHc代数)について調べ、さらにSHc代数を量子変形(DIM代数)することで超共形代数の量子変形を構成する。これはゲージ理論で空間を4次元から5次元へすることに対応し、超共形場理論の量子変形と様々な5次元空間上の超対称ゲージ理論との関連を調べられる。
|
研究実績の概要 |
博士課程の3年間の研究では、弦理論の対称性から出てきた代数の数学的性質について調べてきた。特に、元の代数にパラメータqを加えて変形し、より広い現象を記述したり良い対称性を持つ代数を構成する手法(q変形)について重点的に扱った。 初めの1年では、corner VOAと呼ばれる、弦理論の高次元構造であるブレーンを組み合わせたときにジャンクション部分に出現する代数について扱い、これにq変形と呼ばれる操作を行うことで、q-corner VOAという新たな代数を構成した。さらに、このq-corner VOAと量子トロイダル代数の関連を示した。 2年目には、クイバーヤンギアンというクイバー図に対応して近年構成された無限次元代数について、q変形を構成した。これは、量子トロイダル代数の一般化であり(クイバー量子トロイダル代数)、物理的には結晶融解模型やカラビヤウ多様体と関連している。さらに、このクイバー量子トロイダル代数に関して、異なる表現の間の関連を明らかにした。 3年目には、W代数とIntermediate Long Wave(ILW)方程式、Bethe方程式の関連を調べた論文を投稿した。具体的には、W代数のR行列を組み合わせることで保存量を構成し、これがILW方程式の保存量の量子化になっていることを具体的に確かめた。さらに、このILWハミルトニアンについてパラメータの極限を取ることで、Korteweg-de Vries方程式やBenjamin-Ono方程式と関連づけられることも確かめた。 また、1年目と3年目の研究をもとに博士論文を執筆した。全体的に、当初研究計画で書いたことと異なる方針での研究もあったが、博士課程3年間で5本の論文を投稿し、目標とした研究テーマについて一定程度の進展を得たと言える。
|
現在までの達成度 (段落) |
令和4年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
令和4年度が最終年度であるため、記入しない。
|