研究開始時の研究の概要 |
複素数をn乗する操作は1:1でなく,複素平面に1点を添加して得られる1次元射影代数多様体, リーマン球面上の非同型自己正則写像に延長される. この一般化として, 私の研究目的は、非同型な自己正則写像を数多く持つコンパクト複素多様体の構造を分類論の視点から出来る限り具体的に調べることである. それは楕円曲線やアーベル多様体,トーリック多様体を含むクラスであり, 非常に簡明な構造を持つと予想される. 自己正則写像の系統的研究方法を確立させ,非同型な自己正則写像を持つ多様体の構造研究の一般論を構築したい.
|